
1 Mathematical Expectation

1.1 Mean of a Random Variable

• Suppose that a probability distribution of a random variable X is spec-
ified.

• For a measure of central tendency of the random variable X we use
the terms expectation, expected value, and average value for the
same concept.

• Intuitively, the expected value of X is the average value that the ran-
dom variable takes on.

• However, some of the values of the random variable X could be more
(or less) probable than the other in the distribution unless the random
variable is distributed uniformly.

• Hence, in order to consider an average value of X we need to take its
probability into account.

• If I repeat the experiment many times, what would be the average
number of an outcome of a random variable?

• Definition 4.1:
Let X be a random variable with probability distribution f(x). The
mean or expected values of X is

{

µ = E(X) =
∑

x xf(x) if X is discrete
µ = E(X) =

∫

∞

−∞
xf(x)dx if X is continuous

}

• The expected value is used as a measure of centering or location of the
distribution of a random variable X.

• By the uniform distribution assumption, i.e. all values of X are equally
likely to occur in population with size N , f(x) = 1

N
for all x,

E(X) =
∑

x

xf(x) =
∑

x

x(
1

N
) = (

1

N
)
∑

i

xi = µ = x̄

• Example: If two coins are tossed 16 times and X is the number of
heads that occur per toss, then the value of X can be 0, 1, 2.
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• The experiment yields no heads, one head, and two heads a total of 4,
7, and 5 times, respectively.

• The average number of heads per toss is then

0 ∗
4

16
+ 1 ∗

7

16
+ 2 ∗

5

16

where 4
16

, 7
16

, 5
16

are relative frequencies

x 0 1 2
f(x) 4/16 7/16 5/16

0 ∗
4

16
+ 1 ∗

7

16
+ 2 ∗

5

16
=

17

16
= 1.0625

• Example 4.1: A lot contain 4 good components and 3 defective com-
ponents.

– A sample of 3 is taken by a quality inspector.

– Find the expected value of the number of good components in this
sample.

• Solution: X represents the number of good components

f(x) =

(

4
x

) (

3
3 − x

)

(

7
3

) , x = 0, 1, 2, 3

µ = E(X) = 0 ∗ f(0) + 1 ∗ f(1) + 2 ∗ f(2) + 3 ∗ f(3) =
12

7

• Example 4.3: Let X be the random variable that denotes the life in
hours of a certain electronic device. The probability density function
is as the following.

f(x) =

{

20000
x3 , x > 100

0, elsewhere

}

Find the expected life of this type of device.
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• Solution:

µ = E(X) =

∫

∞

100

x
20000

x3
dx = −

20000

x
j∞100 = 200

• Mean of g(X) (any real-valued function): If X is a discrete random
variable with f(x), for x = −1, 0, 1, 2, and g(X) = X2 then

P [g(X) = 0] = P (X = 0) = f(0),
P [g(X) = 1] = P (X = −1) + P (X = 1) = f(−1) + f(1),
P [g(X) = 4] = P (X = 2) = f(2),

• The probability distribution of g(X) can be written

g(x) 0 1 4
P [g(X) = 4] f(0) f(-1)+f(1) f(2)

•

E(g(X)) = 0 ∗ f(0) + 1 ∗ [f(−1) + f(1)] + 4 ∗ f(2)
= (−1)2 ∗ f(−1) + (0)2 ∗ f(0) + (1)2 ∗ f(1) + (2)2 ∗ f(2)
=

∑

x g(x) ∗ f(x)

• Theorem 4.1::
Let X be a random variable with probability distribution f(x). The
mean of the random variable g(X) is

{

µg(X) = E[g(X)] =
∑

x g(x)f(x) if X is discrete
µg(X) = E[g(X)] =

∫

∞

−∞
g(x)f(x)dx if X is continuous

}

• Example 4.5: Let X be a random variable with density function

f(x) =

{

x2

3
, −1 < x < 2

0, elsewhere

}

• Find the expected value of g(X) = 4X + 3.

• Solution:

E[g(X)] = E(4X + 3) =
1

3

∫ 2

−1

(4x3 + 3x2)dx = 8
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• Theorem 4.2::
Let X and Y be random variables with joint probability function
f(x), y. The mean of the random variable g(X,Y ) is















µg(X,Y ) = E[g(X,Y )] =
∑

x

∑

y g(x, y)f(x, y)

if X and Y are discrete
µg(X,Y ) = E[g(X,Y )] =

∫

∞

−∞

∫

∞

−∞
g(x, y)f(x, y)dxdy

if X and Y are continuous















• Example 4.7: Find E(Y/X) for the density function

f(x, y) =

{

x(1+3y2)
4

, 0 < x < 2, , 0 < y < 1
0, elsewhere

}

• Solution:

E(
Y

X
) =

∫ 1

0

∫ 2

0

y

x

x(1 + 3y2)

4
dxdy =

5

8

• If g(X,Y ) = X is

E(X) =

{ ∑

x

∑

y xf(x, y) =
∑

x xg(x)
∫

∞

−∞

∫

∞

−∞
xf(x, y)dxdy =

∫

∞

−∞
xg(x)dx

}

where g(x) is the marginal distribution of X

• If g(X,Y ) = Y is

E(Y ) =

{ ∑

x

∑

y yf(x, y) =
∑

y yh(y)
∫

∞

−∞

∫

∞

−∞
yf(x, y)dxdy =

∫

∞

−∞
yh(y)dy

}

where h(y) is the marginal distribution of Y

1.2 Variance and Covariance

• A mean does not give adequate description of the shape of a random
variable (probability distribution).

• We need to characterize the variability (or dispersion) of the random
variable X in the distribution.
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Figure 1: Distributions with equal means and unequal dispersions.

• Definition 4.3:
Let X be a random variable with probability distribution f(x) and
mean µ. The variance of X is

{

σ2 = E
[

(X − µ)2
]

=
∑

x(x − µ)2f(x), if X is discrete

σ2 = E
[

(X − µ)2
]

=
∫

∞

−∞
(x − µ)2f(x)dx, if X is continuous

}

σ is called the standard deviation of X.

• Example 4.8:Let the random variable X represent the number of au-
tomobiles that are used for official business purposes on any given work-
day.

• The probability distribution for company A and B is as follows.

x 1 2 3
f(x) 0.3 0.4 0.3

x 0 1 2 3 4
f(x) 0.2 0.1 0.3 0.3 0.1

• Show that the variance of the probability distribution for company B
is greater than that of company A.

• Solution:

µA = E(X) = 1 ∗ 0.3 + 2 ∗ 0.4 + 3 ∗ 0.3 = 2.0

σ2
A =

3
∑

x=1

(x− 2.0)2f(x) = (1− 2)2 ∗ 0.3 + (2− 2)2 ∗ 0.4 + (3− 2)2 ∗ 0.3 = 0.6

µB = 2.0 & σ2
B = 1.6
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• Theorem 4.2:
The variance of a random variable X is

σ2 = E(X2) − µ2

• Example 4.9: Let the random variable X represent the number of de-
fective parts for a machine when 3 parts are sampled from a production
line and tested.

• Calculate σ2 using the following probability distribution.

x 0 1 2 3
f(x) 0.51 0.38 0.10 0.01

• Solution:
µ = E(X) = 0 ∗ 0.51 + . . . = 0.61

E(X2) =
3

∑

x=0

x2f(x) = 02 ∗ 0.51 + . . . = 0.87

σ2 = E(X2) − µ2 = 0.87 − 0.612 = 0.4979

• Theorem 4.3:
Let X be a random variable with probability distribution f(x). The
variance of the random variable g(X) is



















σ2
g(X) = E

{

[g(X) − µg(X)]
2
}

=
∑

x[g(X) − µg(X)]
2,

if X is discrete

σ2
g(X) = E

{

[g(X) − µg(X)]
2
}

=
∫

∞

−∞
[g(X) − µg(X)]

2f(x)dx,

if X is continuous



















• Example 4.11: Calculate the variance of g(X) = 2X + 3, where X is
a random variable with probability distribution.

x 0 1 2 3
f(x) 1/4 1/8 1/2 1/8

• Solution:

µ2X+3 = E(2X + 3) =
3

∑

x=0

(2X + 3)f(x) = 6
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σ2
2X+3 = E

{

[2X + 3 − µ2X+3]
2
}

= E
{

[2X + 3 − 6]2
}

= E(4X2 − 12X + 9) =
3

∑

x=0

(4X2 − 12X + 9)f(x) = 4

• Definition 4.4:
Let X and Y be random variables with joint probability distribution
f(x, y). The covariance of X and Y is















σXY = E[(X − µX)(Y − µY )] =
∑

x

∑

y(x − µX)(y − µY )f(x, y),

if X and Y are discrete

σXY = E[(X − µX)(Y − µY )] =
∫

∞

−∞

∫

∞

−∞
(x − µX)(y − µY )f(x, y)dxdy, if X andY are continuous















• The covariance between two random variables is a measurement of the
nature of the association between the two.

• The sign of the covariance indicates whether the relationship between
two dependent random variables is positive or negative.

• When X and Y are statistically independent, it can be shown that
the covariance is zero.

• The converse, however, is not generally true. Two variables may have
zero covariance and still not be statistically independent.

• The covariance only describe the linear relationship between two ran-
dom variables.

• If a covariance between X and Y is zero, X and Y may have a nonlinear
relationship, which means that they are not necessarily independent.

• Theorem 4.4:
The covariance of two random variables X and Y with means µX and
µY respectively, is given by

σXY = E(XY ) − µXµY

• Definition 4.5:
Let X and Y be random variables with covariance σXY and standard
deviations σX and σY . The correlation coefficient of X and Y is

ρXY =
σXY

σXσY

, −1 ≤ ρXY ≤ 1
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• Exact linear dependency: Y = a + bX

ρXY = 1, if b > 0 ; ρXY = −1, if b < 0

1.3 Means and Variance of Linear Combinations of

Random Variables

• Some useful properties that will simplify the calculations of means and
variances of random variables.

• These properties will permit us to deal with expectations in terms of
other parameters that are either known or are easily computed.

• Theorem 4.5:
If a and b are constants, then

E(aX + b) = aE(X) + b

• Corollary 4.1: E(b) = b

• Corollary 4.2: E(aX) = aE(X)

• Example 4.16: Applying Theorem 4.5 to the continuous random vari-
able g(X) = 4X + 3, the density function of X is as follows.

f(x) =

{

x2

3
for − 1 < x < 2

0, elsewhere

}

• Solution:

E(4X + 3) = 4E(X) + 3 = 4

(
∫ 2

−1

x
x2

3
dx

)

+ 3 = 8

• Theorem 4.6:

E[g(X) ± h(X)] = E[g(X)] ± E[h(X)]

• Theorem 4.7:

E[g(X,Y ) ± h(X,Y )] = E[g(X,Y )] ± E[h(X,Y )]

• Corollary 4.3: Setting g(X,Y ) = g(X) and h(X,Y ) = h(Y ).

E[g(X) ± h(Y )] = E[g(X)] ± E[h(Y )]
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• Corollary 4.4: Setting g(X,Y ) = X and h(X,Y ) = Y .

E[X ± Y ] = E(X) ± E(Y )

• Theorem 4.7:
Let X and Y be two independent random variables. Then

E(XY ) = E(X)E(Y )

• Corollary 4.5: Let X and Y be two independent random variables,
Then σXY = 0

– E(XY ) = E(X)E(Y ) for independent variables

– σXY = E(XY ) − E(X)E(Y ) = 0

• Example 4.19: In producing gallium-arsenide microchips, it is known
that the ratio between gallium and arsenide is independent of producing
a high percentage of workable wafers.

• Let X denote the ratio of gallium to arsenide and Y denote the per-
centage of workable wafers retrieved during a 1-hour period.

• X and Y are independent random variables with the joint density being
known as

f(x) =

{

x(1+3y2)
4

for 0 < x < 2, 0 < y < 1
0, elsewhere

}

Illustrate that E(XY ) = E(X)E(Y ).

• Solution:

E(XY ) =

∫ 1

0

∫ 2

0
xyf(x, y)dxdy =

∫ 1

0

∫ 2

0
xy

x(1 + 3y2)

4
dxdy =

5

6

E(X) =

∫ 1

0

∫ 2

0
xf(x, y)dxdy =

∫ 1

0

∫ 2

0
x

x(1 + 3y2)

4
dxdy =

4

3

E(Y ) =

∫ 1

0

∫ 2

0
yf(x, y)dxdy =

∫ 1

0

∫ 2

0
y
x(1 + 3y2)

4
dxdy =

5

8

(E(XY ) =)
5

6
=

4

3
∗

5

8
(= E(X) ∗ E(Y ))
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• Theorem 4.9:
If a and b are constants, then

σ2
aX+b = a2σ2

X = a2σ2

• Corollary 4.6: σ2
X+b = σ2

X = σ2

– The variance is unchanged if a constant is added to or subtracted
from a random variable.

– The addition or subtraction of a constant simply shifts the values
of X to the right/left but does not change their variability.

• Corollary 4.7: σ2
aX = a2σ2

X = a2σ2

– The variance is multiplied or divided by the square of the constant.

• Theorem 4.10:
If X and Y are random variables with joint probability distribution
f(x, y), then

σ2
aX+bY = a2σ2

X + b2σ2
Y + 2abσXY

• Corollary 4.8: If X and Y are independent random variables, then

σ2
aX+bY = a2σ2

X + b2σ2
Y

• Corollary 4.9: If X and Y are independent random variables, then

σ2
aX−bY = a2σ2

X + b2σ2
Y

• Corollary 4.10: If X1, X2, . . . Xn are independent random variables,
then

σ2
a1X1+a2X2+...anXn

= a2
1σ

2
X1

+ a2
2σ

2
X2

+ . . . + a2
nσ

2
Xn

• Example 4.20: X and Y are random variables with variances σ2
X = 2,

σ2
Y = 2, and covariance σXY = −2,

• Find the variance of the random variable Z = 3X − 4Y + 8

• Solution:

σ2
Z = σ2

3X−4Y +8 = σ2
3X−4Y (by Theorem 4.9)

= 9σ2
X + 16σ2

Y − 24σXY (by Theorem 4.10)

= 130
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• Example 4.21: Let X and Y denote the amount of two different types
of impurities in a batch of a certain chemical product.

• Suppose that X and Y are independent random variables with vari-
ances σ2

X = 2, σ2
Y = 3

• Find the variance of the random variable Z = 3X − 2Y + 5

• Solution:

σ2
Z = σ2

3X−2Y +5 = σ2
3X−2Y (by Theorem 4.9)

= 9σ2
X + 4σ2

Y (by Corollary 4.9)

= 30

1.4 Chebyshev’s Theorem

• If a random variable has a small variance or standard deviation, we
would expect most of the values to be grouped around the mean

• A large variance indicates a greater variability, so the area of distribu-
tion should be spread out more.

Figure 2: Variability of continuous observations about the mean.

• Theorem 4.11:
(Chebyshev’s theorem) The probability that any random variable
X will assume a value within k standard deviation of the mean is at
least 1 − 1/k2. That is

P (µ − kσ < X < µ + kσ) ≥ 1 −
1

k2
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Figure 3: Variability of discrete observations about the: mean.

• Example 4.22: A random variable X has a mean µ = 8, a variance
σ2 = 9, and an unknown probability distribution. Find

• P (−4 < X < 20)

P (µ − kσ < X < µ + kσ) ≥ 1 −
1

k2

P (−4 < X < 20) = P (8 − 4 ∗ 3 < X < 8 + 4 ∗ 3) ≥ 1 −
1

42
=

15

16

• P (|X − 8| ≥ 6)

P (|X − 8| ≥ 6) = 1 − P (|X − 8| < 6) = 1 − P (−6 < X − 8 < 6)

= 1 − P (8 − 6 < X < 6 + 8) = 1 − P (8 − 2 ∗ 3 < X < 8 + 2 ∗ 3) ≤
1

22
=

1

4

• The Chebyshev inequality is a useful tool as well as a relation that
connects the variance of a distribution with the intuitive notation of
dispersion in a distribution.

• For any population or sample, this provides that the minimum probability

of the data within kσ from the mean µ is 1 − 1
k2 .

• The use of Chebyshev’s theorem;

– holds for any distribution of observations

– gives a lower bound only

– is suitable to situations where the form of the distribution is
unknown (a distribution-free result)
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