1 Getting Started

1.1 Compiling with GCC

A compiler turns human-readable source code into machine-readable object
code that can actually run.The compilers of choice on Linux systems are
all part of the GNU Compiler Collection, usually known as GCC. GCC also
compiles Fortran (under the auspices of g77). Front-ends for Pascal, Modula-
3, Ada 9X, and other languages are in various stages of development.The
compilation process includes up to four stages:

e Preprocessing

e Compilation Proper
e Assembly

e Linking

You can stop the process after any of these stages to examine the compiler’s
output at that stage.

GCC includes over 30 individual warnings and three ”catch-all” warning
levels. GCC is also a cross-compiler, so you can develop code on one processor
architecture that will be run on another. Finally, GCC sports a long list of
extensions to C and C++. Most of these extensions enhance performance,
assist the compiler’s efforts at code optimization, or make your job as a
programmer easier. The price is portability, however.

This program will compute the reciprocal of an integer. main.c

#include <stdio.h>
#include <stdlib.h>
#include "reciprocal.hpp"
int main (int argc, char **argv)
{
int 1i;
i = atoi (argv[il);
printf ("The reciprocal of %d is %g\n", i, reciprocal (i));
return O;

}
reciprocal.cpp

#include <cassert>
#include "reciprocal.hpp"
double reciprocal (int i) {

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/main.c
http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/reciprocal.cpp

// I should be non-zero.
assert (i '= 0);
return 1.0/i;

}

There is also one header file called reciprocal.hpp

extern "C" {

#endif

extern double reciprocal (int i);
#ifdef __cplusplus

}

#endif

#ifdef __cplusplus

The first step is to turn the C and C++ source code into object code.

1.1.1 Compiling a Single Source File

To compile a C source file, you use the -c option.

% gcc -c main.c

To tell GCC to stop compilation after preprocessing, use GCC’s -E option:
% gcc -E main.c -o main.pp

Examine main.pp and you can see the contents of stdio.h, stdlib.h and
reciprocal.hpp have indeed been inserted into the file, along with other pre-
processing tokens. The next step is to compile main.pp to object code. Use
GCC’s -c option to accomplish this:

hgcc -x cpp-output -c main.pp -o main.o

The most common extensions and their interpretation are listed in Table 1.
The resulting object file is named main.o. The C++ compiler is called

g++.

% g++ —-c reciprocal.cpp

The -c option tells g++ to compile the program to an object file only; without
it, g++ will attempt to link the program to produce an executable. After
you’ve typed this command, you’ll have an object file called reciprocal.o.

The -I option is used to tell GCC where to search for header files. By
default, GCC looks in the current directory and in the directories where
headers for the standard libraries are installed. If you need to include header
files from somewhere else, you’ll need the -1 option.

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/reciprocal.hpp

Table 1: How GCC interprets filename extensions.

Extension | Type

.C C language source code

.C, .cc C++ language source code

Bl Preprocessed C source code

A Preprocessed C++ source code
S, .8 Assembly language source code
.0 Compiled object code

.a, .S0 Compiled library code

% g++ -c -I ../include reciprocal.cpp

If you don’t want the overhead of the assertion check present in reciprocal.cpp;
that’s only there to help you debug the program.You turn off the check by
defining the macro NDEBUG.

% g++ -c -D NDEBUG reciprocal.cpp

If you had wanted to define NDEBUG to some particular value, you could
have done something like this:

% gt++ —c -D NDEBUG=3 reciprocal.cpp

If you are really building production code, you probably want to have GCC
optimize the code so that it runs as quickly as possible.You can do this by
using the -O2 command-line option. Static variables may vanish or loops
may be unrolled, so that the optimized program does not correspond line-
for-line with the original source code. (GCC has several different levels of
optimization; the second level is appropriate for most programs.)

% g++ -c -02 reciprocal.cpp

Note that compiling with optimization can make your program more difficult
to debug with a debugger. Also, in certain instances, compiling with opti-
mization can uncover bugs in your program that did not manifest themselves
previously.

1.1.2 Optimization Options

Code optimization is an attempt to improve performance. The trade-off is
lengthened compile times and increased memory usage during compilation.

e The bare -O option tells GCC to reduce both code size and execution
time.

e It is equivalent to -O1. The types of optimization performed at this
level depend on the target processor, but always include at least thread
jumps and deferred stack pops.

— Thread jump optimizations attempt to reduce the number of jump
operations,

— deferred stack pops occur when the compiler lets arguments ac-
cumulate on the stack as functions return and then pops them
simultaneously, rather than popping the arguments piecemeal as
each called function returns.

e -02 level optimizations include all first-level optimization plus addi-
tional tweaks that involve processor instruction scheduling. At this
level, the compiler takes care to make sure the processor has instruc-
tions to execute while waiting for the results of other instructions or
data latency from cache or main memory. The implementation is highly
processor-specific.

e -3 options include all 02 optimizations, loop unrolling, and other
processor-specific features. Depending on the amount of low-level knowl-
edge you have about a given CPU family, you can use the -fflag option to
request specific optimizations you want performed. Three of these flags
bear consideration: -ffastmath, -finline-functions, and -funroll-loops.

— -ffastmath generates floating-point math optimizations that in-
crease speed, but violate IEEE and/or ANSI standards.

— -finline-functions expands all ”simple” functions in place, much
like preprocessor macro replacements. Of course, the compiler
decides what constitutes a simple function.

— -funroll-loops instructs GCC to unroll all loops that have a fixed
number of iterations that can be determined at compile time.

e Inlining and loop unrolling can greatly improve a program’s execution
speed because they avoid the overhead of function calls and variable
lookups, but the cost is usually a large increase in the size of the binary
or object files.

e You will have to experiment to see if the increased speed is worth the
increased file size. See the GCC info pages for more details on processor
flag.

1.1.3 Linking Object Files

You should always use g++ to link a program that contains C++ code, even
if it also contains C code. If your program contains only C code, you should
use gee instead. Because this program contains both C and C++, you should
use g++, like this:

% gt++ -o reciprocal main.o reciprocal.o
% ./reciprocal 7
The reciprocal of 7 is 0.142857

As you can see, g++ has automatically linked in the standard C runtime
library containing the implementation of printf. If you had needed to link
in another library (such as a graphical user interface toolkit), you would
have specified the library with the -1 option. In Linux, library names almost
always start with lib. For example, the Pluggable Authentication Module
(PAM) library is called libpam.a.

% gt++ -o reciprocal main.o reciprocal.o -lpam

The compiler automatically adds the lib prefix and the .a suffix.

As with header files, the linker looks for libraries in some standard places,
including the /lib and /usr/lib directories that contain the standard system
libraries. If you want the linker to search other directories as well, you
should use the -L option. You can use this line to instruct the linker to look
for libraries in the /usr/local/lib/pam directory before looking in the usual
places:

% gt++ -o reciprocal main.o reciprocal.o -L/usr/local/lib/pam -lpam

Although you don’t have to use the -I option to get the preprocessor to search
the current directory, you do have to use the -L option to get the linker to
search the current directory. In particular, you could use the following to
instruct the linker to find the test library in the current directory:

% gcc -o app app.o -L. -ltest

By default, gcc uses shared libraries, so if you must link against static li-
braries, you have to use the -static option. This means that only static
libraries will be used. The following example creates an executable linked
against the static ncurses.

% gcc cursesapp.c -lncurses -static

e When you link against static libraries, the resulting binary is much
larger than using shared libraries.

e Why use a static library, then? One common reason is to guarantee
that users can run your program in the case of shared libraries, the code
your program needs to run is linked dynamically at runtime, rather than
statically at compile time.

e [f the shared library your program requires is not installed on the user’s
system, she will get errors and not be able to run your program.

1.1.4 Common Command-line Options

The list of command-line options gcc accepts runs to several pages, so we
will only look at the most common ones in Table 2.

1.1.5 Error Checking and Warnings

GCC boasts a whole class of error-checking, warning-generating, command-
line options. These include -ansi, -pedantic, -pedantic- errors, and -Wall. To
begin with,

e -pedantic tells GCC to issue all warnings demanded by strict ANSI/ISO
standard C. Any program using forbidden extensions, such as those
supported by GCC, will be rejected.

e -pedantic-errors behaves similarly, except that it emits errors rather
than warnings.

e -ansi, finally, turns off GNU extensions that do not comply with the
standard.

None of these options, however, guarantee that your code, when compiled
without error using any or all of these options, is 100 percent ANSI/ISO-
compliant.

Consider pedant.c , an example of very bad programming form. It de-
clares main() as returning void, when in fact main() returns int, and it
uses the GNU extension long long to declare a 64-bit integer.

// pedant.c - use -ansi, -pedantic or -pedantic-errors
#include <stdio.h>
void main(void)

{

long long int i = 01;

fprintf (stdout, "This is a non-conforming C program\n") ;
}
Using

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/pedant.c

Table 2: GCC command-line options.

Option Description

-0 FILE Specify the output filename; not necessary when
compiling to object code. If FILE is not specified, the
default name is a.out.

-c Compile without linking.

-DFOO=BAR | Define a preprocessor macro named FOO with a value
of BAR on the command-line.

-IDIRNAME Prepend DIRNAME to the list of directories searched
for include files.

-LDIRNAME Prepend DIRNAME to the list of directories searched
for library files. By default, gcc links against shared
libraries.

-static Link against static libraries.

-IFOO Link against 1libFOO.

-g Include standard debugging information in the binary.

-ggdb Include lots of debugging information in the binary that
only the GNU debugger, gdb, can understand.

-0 Optimize the compiled code.

-ON Specify an optimization level N, 0 <= N <= 3.

-ansi Support the ANSI/ISO C standard, turning off GNU
extensions that conflict with the standard (this option
does not guarantee ANSI-compliant code).

-pedantic Emit all warnings required by the ANSI/ISO C stan-

dard.

-pedantic-errors

Emit all errors required by the ANSI/ISO C standard.

-traditional Support the Kernighan and Ritchie C language syntax
(such as the old-style function definition syntax). If you
don’t understand what this means, don’t worry about
it.

-w Suppress all warning messages. In my opinion, using
this switch is a very bad idea!

-Wall Emit all generally useful warnings that gcc can provide.
Specific warnings can also be flagged using -Wwarning.

-Werror Convert all warnings into errors, which will stop the
compilation.

-MM Output a make-compatible dependency list.

-V Show the commands used in each step of compilation.

igcc pedant.c -o pedant
this code compiles without complaint.

e First, try to compile it using -ansi:
hgcc —ansi pedant.c -o pedant

Again, no complaint. The lesson here is that -ansi forces GCC to emit
the diagnostic messages required by the standard. It does not insure
that your code is ANSI C compliant. The program compiled despite
the deliberately incorrect declaration of main().

e Now, -pedantic:

%hgcc -pedantic pedant.c -o pedant
pedant.c: In function ‘main’:
pedant.c:9: warning: ANSI C does not support ‘long long’

The code compiles, despite the emitted warning.

e With -pedantic- errors, however, it does not compile. GCC stops
after emitting the error diagnostic:

%hgce -pedantic-errors pedant.c -o pedant
pedant.c: In function ‘main’:
pedant.c:9: ANSI C does not support ‘long long’

To reiterate, the -ansi, -pedantic, and -pedantic-errors compiler options
do not insure ANSI/ISO-compliant code. They merely help you along the
road.

Some users try to use -pedantic to check programs for strict ANSI C
conformance.

1.2 Automating the Process with GNU Make

e The basic idea behind make is simple.You tell make what targets you
want to build and then give rules explaining how to build them. You
also specify dependencies that indicate when a particular target should
be rebuilt.

e make minimizes rebuild times because it is smart enough to determine
which files have changed, and thus only rebuilds files whose components
have changed.

¢ make maintains a database of dependency information for your projects
and so can verify that all of the files necessary for building a program
are available each time you start a build.

o A makefile is a text file database containing rules that tell make what
to build and how to build it. A rule consists of the following:

— A target, the "thing” make ultimately tries to create

— A list of one or more dependencies, usually files, required to build
the target

— A list of commands to execute in order to create the target from
the specified dependencies

e When invoked, GNU make looks for a file named GNUmakefile, make-
file, or Makefile, in that order. For some reason, most Linux program-
mers use the last form, Makefile. Makefile rules have the general form

target : dependency dependency [...]
command
command

[...]

— target is generally the file, such as a binary or object file, that
you want created.

— dependency is a list of one or more files required as input in
order to create target.

— The commands are the steps, such as compiler invocations, nec-
essary to create target.

— Unless specified otherwise, make does all of its work in the current
working directory.

e In addition to the obvious targets, there should always be a clean tar-
get. This target removes all the generated object files and programs so
that you can start fresh. The rule for this target uses the rm command
to remove the files. Here is what Makefile contains:

reciprocal: main.o reciprocal.o

g++ $(CFLAGS) -o reciprocal main.o reciprocal.o
main.o: main.c reciprocal.hpp

gcc $(CFLAGS) -c main.c
reciprocal.o: reciprocal.cpp reciprocal.hpp

g++ $(CFLAGS) -c reciprocal.cpp
clean:
rm -f *.0 reciprocal

This makefile has four rules.

— The first target, reciprocal, is called the default target, this is the
file that make tries to create. reciprocal has two dependencies,
main.o and reciprocal.o; these two files must exist in order to
build editor.

— Following line is the command that make will execute to create ed-
itor.This command builds an executable named reciprocal from
the two object files.

— The next two rules tell make how to build the individual object
files.

e The line with the rule on it must start with a Tab character, or make
will get confused.

e The $(CFLAGS) is a make variable.You can define this variable ei-
ther in the Makefile itself or on the command line. GNU make will
substitute the value of the variable when it executes the rule. So, for
example, to recompile with optimization enabled, you would do this:

% make clean
rm -f *.0 reciprocal
% make CFLAGS=-02

e How does make know when to rebuild a file?
— If a specified target does not exist in a place where make can find
it, make (re)builds it.

— If the target does exist, make compares the timestamp on the
target to the timestamp of the dependencies.

— If one or more of the dependencies is newer than the target, make
rebuilds the target, assuming that the newer dependency implies
some code change that must be incorporated into the target.

10

1.3 Debugging with GNU Debugger (GDB)

e The debugger is the program that you use to figure out why your pro-
gram is not behaving the way you think it should. You can use GDB
to step through your code, set breakpoints, and examine the value of
local variables.

e The -g option can be qualified with a 1, 2, or 3 to specify how much
debugging information to include.

— The default level is 2 (-¢g2), which includes extensive symbol ta-
bles, line numbers, and information about local and external vari-
ables.

— Level 3 debugging information includes all of the level 2 informa-
tion and all of the macro definitions present.

— Level 1 generates just enough information to create backtracks
and stack dumps. It does not generate debugging information for
local variables or line numbers.

e Additional debugging options include the -p and -pg options, which
embed profiling information into the binary.

— This information is useful for tracking down performance bottle-
necks in your code.
— -p adds profiling symbols that the prof program can read,

— -pg adds symbols that the GNU project’s prof incarnation, gprof,
can interpret.

— The -a option generates counts of how many times blocks of code
(such as functions) are entered.

— -save-temps saves the intermediate files, such as the object and
assembler files, generated during compilation.

1.3.1 Compiling with Debugging Information

To use GDB, you will have to compile with debugging information enabled.
Do this by adding the -g switch on the compilation command line. If you are
using a Makefile as described previously, you can just set CFLAGS equal
to -g when you run make, as shown here:

% make CFLAGS=-g

11

When you compile with -g, the compiler includes extra information in the
object files and executables. The debugger uses this information to figure
out which addresses correspond to which lines in which source files, how to
print out local variables, and so forth.

1.3.2 Running GDB
You can start up gdb by typing:

% gdb reciprocal
When gdb starts up, you should see the GDB prompt:
(gdb)

The first step is to run your program inside the debugger. Just enter the
command run and any program arguments.

(gdb) run
Starting program: reciprocal

Program received signal SIGSEGV, Segmentation fault.
__strtol_internal (nptr=0x0, endptr=0x0, base=10, group=0)
at strtol.c:287

287 strtol.c: No such file or directory.

(gdb)

The problem is that there is no error—checking code in main. The program
expects one argument, but in this case the program was run with no argu-
ments. The SIGSEGYV message indicates a program crash. GDB knows
that the actual crash happened in a function called _strtol_internal. That
function is in the standard library, and the source is not installed, which
explains the ”No such file or directory” message.You can see the stack by
using the where command:

(gdb) where

#0 __strtol_internal (nptr=0x0, endptr=0x0, base=10, group=0)
at strtol.c:287

#1 0x40096fb6 in atoi (nptr=0x0) at ../stdlib/stdlib.h:251

#2 0x804863e in main (argc=1, argv=0xbffffbe4) at main.c:8

You can see from this display that main called the atoi function with a
NULL pointer, which is the source of the trouble. You can go up two levels
in the stack until you reach main by using the up command:

12

(gdb) up 2
#2 0x804863e in main (argc=1, argv=0xbffffbe4) at main.c:8
8 i = atoi (argv([1]);

You can view the value of variables using the print command:

(gdb) print argv[1]
$2 = 0x0

That confirms that the problem is indeed a NULL pointer passed into atoi.
You can set a breakpoint by using the break command:

(gdb) break main
Breakpoint 1 at 0x804862e: file main.c, line 8.

This command sets a breakpoint on the first line of main. Now try rerunning
the program with an argument, like this:

(gdb) run 7
Starting program: reciprocal 7

Breakpoint 1, main (argc=2, argv=0xbffffb5e4) at main.c:8
8 i = atoi (argv([1]);

You can see that the debugger has stopped at the breakpoint. You can step
over the call to atoi using the next command:

(gdb) next
9 printf ("The reciprocal of %d is %g\n", i, reciprocal (i));

If you want to see what is going on inside reciprocal, use the step command
like this:

(gdb) step
reciprocal (i=7) at reciprocal.cpp:6
6 assert (i !'= 0);

You are now in the body of the reciprocal function.

1.4 Finding More Information
1.4.1 Man Pages

Linux distributions include man pages for most standard commands, system
calls, and standard library functions. The man pages are divided into num-
bered subsections; for programmers, the most important are these:

13

(1) User commands

(2) System calls

(3) Standard library functions

(8) System/administrative commands

The numbers denote man page subsections. Linux’s man pages come in-
stalled on your system; use the man command to access them. To look
up a man page, simply invoke man name, where name is a command or
function name.

% man sleep
% man 3 sleep

If you’re not sure which command or function you want, you can perform a
keyword search on the summary lines, using man -k keyword.

1.4.2 Header Files

You can learn a lot about the system functions that are available and how to
use them by looking at the system header files. These reside in /usr/include
and /usr/include/sys. These header files make good reading for inquiring
minds. Don’t include them directly in your programs, though; always use
the header files in /usr/include or as mentioned in the man page for the
function you're using. The source code for the Linux kernel itself is usually
stored under /usr/src/linux.

14

	Getting Started
	 Compiling with GCC
	Compiling a Single Source File
	Optimization Options
	Linking Object Files
	Common Command-line Options
	Error Checking and Warnings

	Automating the Process with GNU Make
	Debugging with GNU Debugger (GDB)
	Compiling with Debugging Information
	Running GDB

	Finding More Information
	Man Pages
	Header Files

