1.1

Programming the User Interface II

Creating Graphical Interfaces

When it comes to creating GUIs, Linux programmers have more op-
tions available than they do for creating TUIs. Probably the most
popular and certainly the best known toolkits used to create graphical
applications are Qt and GTK+.

— Qt is the C++ application framework that powers KDE, the K
Desktop Environment.

— GTKH+ is the toolkit underneath GNOME, the GNU Network Ob-
ject Model Environment. GTK+ is written largely in C, but it
has language bindings available for many other programming lan-
guages, such as Perl, C+4, and Python, so you can use GTK+
features in many programming environments.

There are many other toolkits, frameworks, and libraries that you can
use to develop GUIbased applications for Linux. The following list, ar-
ranged alphabetically, describes some of the most common ones. Most
of these toolkits and frameworks describe widget sets, which are im-
plemented in one or more programming libraries. Widget is the term
applied to a user interface abstraction, such as a scrollbar or a button,
created using the toolkit.

— Athena; The Athena library was one of the earliest widget li-
braries available for the X Window System. It was a thin layer
of abstraction on top of raw Xlib calls that made it slightly less
painful to create scrollbars, text entry boxes, and other typical
GUI elements. It is part of the standard X11 distribution.

— 3-D Athena Toolkit; The 3D Athena Toolkit was a 3D version of
the original Athena toolkit. It gave Athena a 3D look and was a
considerable visual improvement over plain vanilla Athena. The
3D Athena toolkit, although no longer widely used.

— FLTK; FLTK, which is pronounced “full tick” is an acronym for
the Fast Light Toolkit. FLTK is a GUI for X, Mac OS X, and
Microsoft Windows. Written in C+4, FLTK makes it possible to
write GUIs that look almost identical regardless of the platform
on which the GUI runs. FLTK also supports OpenGL graphics.

— XForms; XForms is a GUI toolkit based on Xlib. It isn’t highly
configurable like the other GUI toolkits discussed in this section,

1

but its simplicity makes XForms easier to use than the other
graphical toolkits. It comes with a GUI builder that makes it
fast and easy to get working application up and running.

— OpenGL; OpenGL is the industry-standard 3D graphics toolkit. It
provides the most realistic and lifelike graphics currently available

for the X Window System. It is generally available as part of
XFree86.

— Motif; Motif was one of the first widget or interface toolkits avail-
able for the X Window System that combined both an interface
toolkit and a window manager. Originally available only as a
commercial product, it is now available in an open source version.

— Xlib; Xlib is shorthand for the X library, a low-level, C-based inter-
face to the raw X Window System protocol. If you want to write
as close to the X graphics core as possible, you write Xlib-based
programs. Indeed, most window managers, widget libraries, and
GUI toolkits are written using Xlib function. While using straight
Xlib gives you the best performance, it is extremely code intensive.
Xlib is an essential ingredient of the standard X distribution.

— Xt; Xt Intrinsics are a very thin layer of functions and data struc-
tures on top of Xlib. Xt Intrinsics create an object-oriented inter-
face that C programs can use to create graphical elements. With-
out other widget sets, the Intrinsics are not especially useful. Xt,
like Xlib, is a part of the standard X distribution and is not avail-
able separately.

1.2 KDE and Qt

e The name of the software is the K Desktop Environment, called KDE
for short. It is a graphical user interface that is popular on Linux
and other flavors of the UNIX family of operating systems. Virtually
all graphical interfaces in the UNIX family are built on top of the X
Windowing System.

e The X Windowing System gives the graphics its portability across many
systems; the Qt library of graphics objects provides the basic building
blocks of an application; and the KDE library provides a standard look
and feel.

e When you write a KDE application, you are writing code that will rest
on top of a lot of other code. Most of the detailed work of getting your

Application

KDE Classes

Qt Classes

C++ APl

glib X11

System

Figure 1: The levels of software for a KDE application in Linux.

application written has already been done, and that work resides in the
libraries of code that will link to your application to do the things you
would like for it to do. The diagram in Figure [l should give you some
idea of the levels of software that make up a KDE application.

The way the diagram is drawn makes it appear that the levels are
completely separate, but that’s not the case. For example, perfectly
valid calls are made from KDE classes to glib functions, and there is
nothing to prevent your application from making calls directly to, say,
glib or the system calls.

An application typically uses classes from both KDE and Qt. However,
the calls are only downward — for example, no part of the Qt API makes
use of anything in KDE.

The Software Levels

— System; This is the lowest layer of software available to every
Linux application. A set of low-level system calls provides direct
access into the operation system, and its drivers, to do things
like open files and create directories. Because the Linux kernel is
written in C, these are all C function calls.

— glib; This is a set of C functions, macros, and structures that are
used by all the layers above it; and, quite often, it is also used
by applications. The glib library contains functions for memory
allocation, string formatting, date and time, I/O, and timers. It
also has utility functions for linked lists, arrays, hash tables, trees,
quarks, and caches. One of the crucial functions handled by glib

is the main loop, which enables KDE to handle multiple resources
while it simultaneously executes the code of an application.

— X11; This is the graphics layer that handles the low-level func-
tions used to control the display. All the fundamental windowing
functions are included — these are the functions that display win-
dows and respond to the mouse and keyboard. This library has
become very stable over the years and the version numbers have
rarely changed. Currently, it is version 11 (as indicated by its
name). And, because version 11 is in release 6, it is also known
as X11R6. Its original name was without the version number, so
it is often simply called X.

— C++ API; Everything above this layer is written using C+-+, so
the C4++ run-time system is called on for things such as creating
new objects and handling I/O streams.

— @t Classes; This set of C++ classes implements the various wid-
gets (buttons, window frames, and so on) that can be used to
create an application. It has the capability of combing windows
to together to create complicated graphics dialogs. At the same
time that it displays these widgets, it can respond to the mouse
and keyboard for more input, and dispatch information from the
input window to the correct part of the program.

— KDE Classes; These classes modify and add functionality to the
Qt classes. There is a large number of KDE classes, but the ma-
jority of them extend directly from one or more of the Qt classes.
This layer is what gives KDE its unique appearance, and stan-
dardizes the way the window, mouse, and keyboard all interact
with one another.

— Applications; There are two basic flavors of applications. You can
create either a Qt application or a KDE application. A Qt appli-
cation is one that creates a QApplication object to initialize itself,
while a KDE application initializes itself by creating a KAppli-
cation object. The KApplication class extends the QApplication
class by adding the things that are necessary for the standard
appearance and capabilities of a KDE application.

About Qt

— Qt is a library of C+4 GUI application development software.
Its purpose is to provide everything needed to develop the user

4

interface portion of applications. It does this primarily in the
form of a collection of C++ classes. The Norwegian company
Troll Tech (| http://www.trolltech.com/) first introduced Qt as a
commercial product in 1995.

The set of Qt classes is quite robust. The Qt classes include
everything from basic window controls, drag and drop, and inter-
nationalization to network programming.

The QQObject Class; All but about a dozen of the Qt classes inherit
from the base class QObject. This means that virtually every
class in the Qt library contains the same basic set of methods.
The constructor for this class can optionally accept the address of
a parent object, and a character string that assigns the object a
name:

Q0bject(Q0bject *parent = O, const char *name = 0);

— The MOC Compiler; One feature used by developers is the Meta

Object Compiler (also called the MOC compiler).

x The MOC compiler reads your source code and generates spe-
cial C++ source files for you to compile and link along with
your application.

x These special files contain the code necessary for one object
to emit a “signal” that is received by a “slot” in one or more
other objects. This is the method used to asynchronously
transmit information from one object to another within an
application.

x The MOC compiler is triggered by the presence of the Q_ OBJECT

macro within a class definition to determine whether to gen-
erate code, and what code is generated.

* The resulting source code can be either compiled separately
and linked, or simply included in your code with the #include
directive.

x Using the MOC compiler not only activates the signals and
slots, but also generates code that enables some special meth-
ods that are defined in every Qt class (and thus, by inheri-
tance, in every object in your program). These special meth-
ods are defined in the QtObject class.

http://www.trolltech.com

About KDE

— KDE is an open source development project of a graphical desktop
environment. Other than being the first letter of the acronym, the
K doesn’t stand for anything. It is just a name.

— The KDE software is constructed using Qt. The project began
in 1996, the year after the first version of Qt was released. Since
then, the project has grown to become a very complete desktop
environment with a large collection of applications.

— From the software developer’s point of view, KDE is quite simple.
While most of the software written as part of the KDE project
is used as an integral part of the desktop environment, a large
number of classes have also been developed; and they are included
as part of a core KDE API. These classes are meant to help give
KDE applications a standard look and feel.

— Most of these classes inherit from one or more classes of the Qt
library, and some of the KDE classes add capabilities beyond that
of Qt, but most of them are simply for the sake of maintaining the
standard appearance of KDE. It would be easy enough to write
your entire application using only the classes of Qt, but if you
use the KDE classes, your application is more likely to appear
integrated with the rest of the desktop.

Events Happen

— An application that runs in the K Desktop Environment is an
event-driven program. This means that when a program starts
running, it displays its window (or windows) and waits for input
from the mouse or keyboard. This input comes wrapped inside
objects called events.

— An event can also tell the program that a window has been closed,
or that the window has been exposed after being hidden behind
another window. The application’s entire purpose is to respond
intelligently to the keyboard and mouse.

— An application has one main top-level window. It can also have
other windows. These windows can exist for the entire life of the
application, or they can appear and disappear as the application
responds to events.

— Each window is encapsulated in a widget. The top-level window of
an application is a widget. Each pop-up window is also a widget.
In fact, the entire display is made up of widgets. Because one
widget is capable of containing and displaying other widgets, every
button, label, and menu item is its own individual widget.

— Programming the graphical display portion of your application
is a matter of creating and combining widgets, and then writing
the code that activates the widgets and responds to the events
received by the widgets.

— A widget is any class that inherits from the Qt class named QWid-
get. A QWidget object contains and manages its own displayable
window. It can also be set to respond to events issued by the
mouse and keyboard (and whatever else you have for input) that
are sent to the window inside the widget. It knows things about
its current visibility, its size, its background color, its foreground
color, its position on the display, and so on. You can use the wid-
gets defined in either Qt or KDE, or you can create your own by
using QWidget as a base class.

The Names of Things

— The Qt class names begin with the letter Q and the KDE class
names begin with the letter K. That way, when you read the source
code of a program, you can determine where a class is defined. If
you find two classes that have the same name except for the first
letter, it means that one is an extension of the other.

— For example, the KDE class KPixmap uses the Qt class QPixmap
as its base class. Every class in Qt and KDE is defined in a header
file. In every case (well, almost every case), the header file derives
its name from the name of the class.

— For example, the header file for the QPopupMenu class is named
gpopupmenu.h, and the class KFontDialog is defined in kfontdi-
alog.h. However, this naming convention is not universally true
because more than one class can be defined in a header.

— For example, the class KFontChooser is also defined in kfontdia-
log.h. Also, some source filenames are abbreviated. For example,
the header for KColorDialog is named kcolordlg.h.

/* helloworld.cpp */
#include <qgapplication.h>
#include <qglabel.h>
#include <gstring.h>

int main(int argc,char **argv)
{
QApplication app(argc,argv) ;
QLabel *label = new QLabel (NULL) ;
10 QString string(‘‘Hello, world’’);
11 label->setText(string);
12 label->setAlignment(
13 Qt::AlignVCenter | Qt::AlignHCenter);
14 label->setGeometry(0,0,180,75);
15 label->show();
16 app.setMainWidget(label);
17 return(app.exec());

Figure 2: A simple Qt program displaying text.

1.3 Creating and Displaying a Window

The first example is a minimal Qt application, and the second is a minimal
KDE application.

Hello Qt

e The following example program creates and displays a simple window.
It doesn’t do anything other than display a line of text, but it gives
you an idea of the fundamental requirements of a Qt program. The
window is shown in Figure

— The file qapplication.h included on line 2 is almost always included
in the same source file that contains the main() function.

— This example uses a QLabel widget to display text, so it is nec-
essary to also include glabel.h. And a QString object is required
to specify the text displayed by the QLabel object, so gstring.h is
included on line 4.

— Line 8 creates a QApplication object named app. The QApplica-
tion object is a container that will hold the top-level window (or
set of windows) of an application. A top-level window is unique

8

in that it never has a parent window in the application. Because
the QApplication object takes over things and manages your ap-
plication, there can only be one of these per program. Also, the
creation of a QApplication object initializes the Qt system, so it
must exist before any of the other Qt facilities are available.

A Qt program is a C++ program. This means that in order to
start the program, a function named main() will be called by the
operating system. And, like all C+4 programs, command-line
options may or may not be passed to the main() function. The
command-line options are passed on to the Qt software as part of
the initialization process, as shown on line 8.

The two command-line arguments, argc and argv, are used in the
construction of app because some special flags and settings can
be specified. For example, starting a Qt program with -geometry
will specify the size and location of the window it displays. By
altering the profile information that starts a program, a user can
personalize a program’s appearance.

A QLabel widget is created on line 9. A QLabel widget is simply
a window that is capable of displaying a string of characters. The
label is created with its specified parent widget as NULL because
this label is to be the top-level window, and top-level windows
have no parents. As it is created, the label contains no text, but
it is provided text by being passed the QString object created on
line 10.

The QString object is inserted into the QLabel with the call to
setText() on line 11. The default action for a QLabel is to display
the character string centered vertically and justified to the left, so
the call to setAlignment() is made on line 12 to center the text
both vertically and horizontally.

The call to setGeometry() on line 14 determines the location,
height, and width of the label widget inside the QApplication win-
dow. For this example, the label is positioned at location (0,0),
which is the upper-left corner of the main window. It is also in-
structed to be 180 pixels wide by 75 pixels high. Before anything
is displayed, the main window will query the label to find out its
size, and then the main window will set its own size to contain

the label.

The call to show() on line 16 is necessary in order for the label
to actually appear on the window. The show() function does not

9

immediately display the widget, it only configures it so that it will
be displayed when the time comes. The parent window — in this
case, the QApplication window — assumes the task of displaying
the label, but will only do so if there has been a call to the label’s
show() method. Another function, named hide(), can be used to
cause a widget to disappear from the display.

— The call to setMainWidget() on line 11 inserts the label into the
main window. To keep this example simple, the QLabel object
is used, but normally the widget will be some sort of compound
widget that contains the collection of widgets, text, and other
elements of the main window of an application.

— Finally, a call is made to exec() on line 17. This function does
not return until it is time for the program to cease execution.
It returns an int value representing its completion status; and
because we are not processing status codes, the value is simply
returned to the system.

e Because the program is simple and consists of only one source file, the
makefile that compiles it is quite simple:

INCL= -I$(QTDIR)/include -I$(KDEDIR)/include
CFLAGS= -pipe -02 -fno-strength-reduce
LFLAGS= -L$(QTDIR)/1lib -L$(KDEDIR)/1lib -L/usr/X11R6/1lib
LIBS= -1qt-mt -1X11 -1Xext
CC=g++
helloworld: helloworld.o
$(CC) $(LFLAGS) -o helloworld helloworld.o $(LIBS)
helloworld.o: helloworld.cpp
clean:
rm -f helloworld
rm -f helloworld.o
.SUFFIXES: .cpp

.Cpp.o:
$(CC) -c $(CFLAGS) $(INCL) -o $@ $<

e The makefile assumes that the environment variables QTDIR and KDEDIR
are defined as the name of the installation directory of the Qt and KDE
development systems. Normally, these two environment variables have
their definitions configured when you install the software.

10

/* hellokde.cpp */
#include <kapp.h>
#include <qglabel.h>
#include <gstring.h>

int main(int argc,char **argv)
{
KApplication app(argc,argv, ‘ ‘hellokde’’);
QLabel *label = new QLabel (NULL) ;
QString string(‘‘Hello, KDE‘‘);
label->setText (string);
label->setAlignment(
Qt::AlignVCenter | Qt::AlignHCenter);
label->setGeometry(0,0,180,75);
label->show();
app.setMainWidget (label) ;
return(app.exec());

}

© 0 NO O W N -

e
= O

L e e =
0 N O O W N

Figure 3: A simple KDE program displaying text.

Hello KDE

e This example, shown in Figure Bl is the same as the previous one except
it is based on a KApplication object, rather than a QApplication ob-
ject. Because the KApplication class is based on QApplication, there
are no fundamental differences other than the addition of KDE facilities
such as styles and themes, the capability to use KDE widgets, access
to the standard KDE configuration, access to session management in-
formation, and the capability to launch the user’s Web browser and
e-mail client.

— The KApplication object is defined in the header file kapp.h in-
cluded on line 2. The kapp.h file includes the qapplication.h file,
so every facility available to a Qt program is also available to a
KDE program. The header files included on lines 3 and 4 hold the
definitions of the QLabel and QString classes.

— The KApplication object is created on line 8 by being passed the
command-line arguments and a name for the application. This
name can be used for such application-specific tasks as locating
icons, receiving messages, and reading configuration information.

11

e Because a KDE object is being used in this program, it is necessary
to include the KDE library that holds the object. There are some
specialized KDE libraries, but the main two libraries are libkdecore
and libkdeui.

INCL= -I$(QTDIR)/include -I$(KDEDIR)/include/kde
CFLAGS= -02 -fno-strength-reduce
LFLAGS= -L$(QTDIR)/1ib -L$(KDEDIR)/1lib -L/usr/X11R6/1ib
LIBS= -lkdecore -lkdeui -lgqt-mt -1X11 -1Xext -1dl
CC=g++
hellokde: hellokde.o

$(CC) $(LFLAGS) -o hellokde hellokde.o $(LIBS)
hellokde.o: hellokde.cpp
clean:

rm -f hellokde

rm -f hellokde.o
.SUFFIXES: .cpp

.Cpp.o:
$(CC) -c $(CFLAGS) $(INCL) -o $@ $<

e The LIBS definition shows the inclusion of the libraries libkdecore.a,
which contains the core functionality of KDE; and libkdeui.a, which
contains all of the KDE widgets. KDE internally implements ODBC
(Open Database Connectivity) by dynamically loading ODBC drivers,
so it is also necessary to include the library libdl.a. The installation of

KDE places these libraries in the default directory, so there is no need
to add a new search path to LFLAGS.

12

	Programming the User Interface II
	Creating Graphical Interfaces
	KDE and Qt
	Creating and Displaying a Window

