1

Processes

A running instance of a program is called a process.

1.1

When you invoke a command from a shell, the corresponding program is
executed in a new process; the shell process resumes when that process
completes.

Use multiple cooperating processes in a single application to enable the
application to do more than one thing at once, to increase application
robustness, and to make use of already-existing programs.

There are basically two operations to create or alter a process.

1. you can fork to create another process that is an exact copy of
the existing process,

2. you can use execve to replace the program running in a process
with another program.

Running another program usually involves both operations, possibly
altering the environment in between.

Newer, lightweight processes (threads) provide separate threads of ex-
ecution and stacks but shared data segments.

The Linux specific clone call was created to support threads; it allows
more flexibility by specifying which attributes are shared.

The use of shared memory allows additional control over resource shar-
ing between processes.

Looking at Processes

1.1.1 Process IDs

Each process in a Linux system is identified by its unique process 1D,
pid.

Process IDs are 16-bit numbers that are assigned sequentially by Linux
as new processes are created.

Every process also has a parent process, you can think of the processes
on a Linux system as arranged in a tree, with the init process at its
root.The parent process ID, or ppid, is simply the process ID of the
process’s parent.

biootstrap wolt un fi

il adte Syshem shbdloswn

‘e untill ol
chnidnan axal

=0 o
fogin I

avalohie
termendls
wEar

amirenmant

Figure 1: UNIX System initialization

e A program can obtain the process ID of the process it’s running in with
the getpid() system call, and it can obtain the process ID of its parent
process with the getppid() system call.

#include <stdio.h>
#include <unistd.h>

int main ()

{
printf ("The process id is %d\n", (int) getpid ();
printf ("The parent process id is %d\n", (int) getppid ());
return O;

3

if you invoke it every time from the same shell, the parent process 1D
(that is, the process ID of the shell process) is the same.

1.1.2 Viewing Active Processes

e The ps command displays the processes that are running on your sys-
tem.

$ ps

e This invocation of ps shows two processes. The first, bash, is the shell
running on this terminal. The second is the running instance of the ps
program itself.

$ ps -e -o pid,ppid,command

1.1.3 Killing a Process

e You can kill a running process with the kill command. Simply specify
on the command line the process ID of the process to be Kkilled.

e The kill command works by sending the process a SIGTERM or
termination, signal. This causes the process to terminate, unless the
executing program explicitly handles or masks the SIGTERM signal.

1.2 Process Control
1.2.1 Attributes

e Table [M attempts to summarize how process attributes are shared,
copied, replaced, or separate for the four major ways to change a pro-
cess.

e Instead of actually copying memory, a feature known as ”copy-on-
write” is frequently used in modern OSes like Linux.

e The mappings between virtual and physical memory are duplicated
for the new process, but the new mappings are marked as read-only.
When the process tries to write to these memory blocks, the exception
handler allocates a new block of memory, copies the data to the new
block, changes the mapping to point to the new block with write access,
and then resumes the execution of the program.

e This feature reduces the overhead of forking a new process.

1.3 Creating Processes

Two common techniques are used for creating a new process.The first is
relatively simple but should be used rarely because it is inefficient and has
considerably security risks. The second technique is more complex but pro-
vides greater flexibility, speed, and security.

Table 1: Process Attribute Inheritance

Attribute fork thread | clone execve
Virtual Memory

Code Segment copy shared CLONE_VM replaced
Const Data Segment don’t care | shared CLONE_VM replaced
Variable Data Segment | copy shared | CLONE_-VM replaced
stack copy separate | CLONE_VM replaced
mmap copy shared CLONE_VM replaced
brk copy shared CLONE_VM replaced
command line copy shared CLONE_VM replaced
environment copy shared CLONE_VM replaced
Files

chroot, chdir, umask copy shared CLONE_FS copy
File descriptor table copy shared CLONE_FILES copy

file locks separate separate | CLONE_PID same
Signals

Signal Handlers copy shared CLONE_SIGHAND | reset
Pending Signals separate separate | separate reset
Signal masks separate separate | separate reset
Process Id different different | CLONE_PID same
timeslice separate shared CLONE_PID same

1.3.1 Using system and popen

The system and popen functions in the standard C library provides
an easy way to execute a command from within a program, much as if
the command had been typed into a shell.

For lazy programmers, the system and popen functions exist. These
functions must not be used in any security sensitive program.

These functions fork and then exec the user’s login shell that locates
the command and parses its arguments.

They use one of the wait family of functions to wait for the child
process to terminate.

The popen function is similar to system, except it also calls pipe and
creates a pipe to the standard input or from the standard output of the
program, but not both.

#include <stdlib.h>

int main ()

{
int return_value;
return_value = system ("1ls -1 /");
return return_value;

3

e The system function returns the exit status of the shell command.
If the shell itself cannot be run, system returns 127; if another error
occurs, system returns —1.

e Because the system function uses a shell to invoke your command, it’s
subject to the features, limitations, and security flaws of the system’s

shell.

1.3.2 Using fork and exec

e The DOS and Windows API contains the spawn family of functions. These
functions take as an argument the name of a program to run and create
a new process instance of that program.

e Linux doesn’t contain a single function that does all this in one step.
Instead, Linux provides one function, fork, that makes a child process
that is an exact copy of its parent process.

e Linux provides another set of functions, the exec family, that causes
a particular process to cease being an instance of one program and to
instead become an instance of another program.

e Under Linux, vfork is the same as fork. Under some operating sys-
tems, vfork is used when the fork will be immediately followed by
an execve, to eliminate unneeded duplication of resources that will be
discarded; in order to do this, the parent is suspended until the child
calls execve.

e Calling fork

— When a program calls fork, a duplicate process, called the child
process, is created.

— The parent process continues executing the program from the
point that fork was called. The child process, too, executes the
same program from the same place.

— The fork function provides different return values to the parent
and child processes

x one process goes in” to the fork call, and two processes
”come out,” with different return values.

x The return value in the parent process is the process ID of
the child.

* The return value in the child process is zero.

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

int main ()

{
pid_t child_pid;
printf ("the main program process id is %d\n", (int) getpid O);
child_pid = fork O;
if (child_pid '= 0) {
printf ("this is the parent process, with id %d\n", (int) getpid ());
printf ("the child’s process id is %d\n", (int) child_pid);
}
else
printf ("this is the child process, with id %d\n", (int) getpid O);
return O;
}

e Using the exec Family

— The exec functions replace the program running in a process with
another program.

— When a program calls an exec function, that process immedi-
ately ceases executing that program and begins executing a new
program from the beginning, assuming that the ezec call doesn’t
encounter an error.

— The library functions execl, execlp, execle, execv, and execvp
are simply convenience functions that allow specifying the argu-
ments in a different way, use the current environment instead of
a new environment, and/or search the current path for the exe-
cutable.

Functions that contain the letter p in their names (execvp
and execlp) accept a program name and search for a pro-
gram by that name in the current execution path; functions
that don’t contain the p must be given the full path of the
program to be executed.

Functions that contain the letter v in their names (execv,
execvp, and execve) accept the argument list for the new
program as a NULL-terminated array of pointers to strings.

Functions that contain the letter 1 (execl, execlp, and exe-
cle) accept the argument list using the C language’s varargs
mechanism.

Functions that contain the letter e in their names (execve
and execle) accept an additional argument, an array of
environment variables. The argument should be a NULL-
terminated array of pointers to character strings. Each char-
acter string should be of the form ”VARIABLE=value”.

#include <unistd.h>

int

execve (const char *filename, char *const argv [],

char *const envpl[]);
extern char **environ;

int
int
int

int
int

execl(const char *path, const char *arg, ..., NULL);

execlp(const char *file, const char *arg, ..., NULL);

execle(const char *path, const char *arg , ..., NULL,
char * const envpl[]);

execv(const char *path, char *const argv[]);

execvp(const char *file, char *const argv([]);

— Because exec replaces the calling program with another one, it
never returns unless an error occurs.

— Only rarely will you want to use these routines by themselves.
Normally, you will want to execute a fork first to exec the pro-
gram in a child process.

e Using fork and exec Together

— Allows the calling program to continue execution in the parent
process while the calling program is replaced by the subprogram
in the child process.

#include <stdio.h>
#include <stdlib.h>

#include <sys/types.h>
#include <unistd.h>

/* Spawn a child process running a new program. PROGRAM is the name
of the program to run; the path will be searched for this program.
ARG_LIST is a NULL-terminated list of character strings to be
passed as the program’s argument list. Returns the process id of
the spawned process. */

int spawn (char* program, char** arg_list)

{
pid_t child_pid;

/* Duplicate this process. */
child_pid = fork ();
if (child_pid != 0)
/* This is the parent process. */
return child_pid;
else {
/* Now execute PROGRAM, searching for it in the path. */
execvp (program, arg_list);
/* The execvp function returns only if an error occurs. */
fprintf (stderr, "an error occurred in execvp\n");
abort ();

int main ()

{
/* The argument list to pass to the "1ls" command. */
char* arg_list[] = {

"ls", /* argv[0], the name of the program. */

ll_lll,

ll/ll,

NULL /* The argument list must end with a NULL. x*/

+;
/* Spawn a child process running the "ls" command. Ignore the
returned child process id. */

spawn ("ls", arg_list);

printf ("done with main program\n");

return O;

}

1.3.3 Using clone

e The Linux specific function call, clone, is an alternative to fork that
provides more control over which process resources are shared between
the parent and child processes.

#include <sched.h>
int __clone(int (*fn) (void *arg), void *child_stack, int flags,
void *arg)

e This function exists to facilitate the implementation of pthreads. It is
generally recommended that you use the portable pthreads_create()
to create a thread instead, although clone provides more flexibility.

1. The first argument is a pointer to the function to be executed.

2. The second argument is a pointer to a stack that you have allo-
cated for the child process.

3. The third argument, flags, is CLONE_* flags (shown in Table [II).

4. The fourth argument, arg, is passed to the child function; its func-
tion is entirely up to the user.

e The call returns the process ID of the child process created. In the
event of an error, the value -1 will be returned and errno will be set.

1.3.4 Process Scheduling

e The following calls manipulate parameters that set the scheduling al-
gorithm and priorities associated with a process.

#include <sched.h>

int sched_setscheduler(pid_t pid, int policy,
const struct sched_param *p);

int sched_getscheduler(pid_t pid);

struct sched_param {

int sched_priority;

};

#include <unistd.h>

int nice(int inc);

#include <sys/time.h>

#include <sys/resource.h>

int getpriority(int which, int who);

int setpriority(int which, int who, int prio);
#include <sched.h>

int sched_get_priority_max(int policy);

int sched_get_priority_min(int policy);

A process with a higher static priority will always preempt a process
with a lower static priority.

For the traditional scheduling algorithm, processes within static pri-
ority 0 will be allocated time based on their dynamic priority (nice
value).

The system calls sched_setscheduler and sched_getscheduler are
used to set or get, respectively, the scheduling policy and parameters
(set only) associated with a particular process.

The scheduling policy, policy, is one of

— SCHED_OTHER (the default universal time-sharing scheduler pol-
icy used by most processes),

— SCHED_FIFO,
— SCHED_RR.

The latter two specify special policies for time critical applications and
will preempt processes using SCHED_OTHER.

A SCHED_FIFO process can only be preempted by a higher priority
process, but a SCHED_RR process will be preempted if necessary to
share time with other processes at the same priority.

Linux schedules the parent and child processes independently; there’s
no guarantee of which one will run first, or how long it will run before
Linux interrupts it and lets the other process (or some other process
on the system) run.

In particular; none, part, or all of the Is command may run in the child
process before the parent completes.

You may specify that a process is less important and should be given
a lower priority by assigning it a higher niceness value.

10

By default, every process has a niceness of zero.

A higher niceness value means that the process is given a lesser exe-
cution priority; conversely, a process with a lower (that is, negative)
niceness gets more execution time.

$ nice -n 10 sort input.txt > output.txt

e You can use the renice command to change the niceness of a running
process from the command line.

Only a process with root privilege can run a process with a negative
niceness value or reduce the niceness value of a running process.

1.4 Signals

Signals are mechanisms for communicating with and manipulating pro-
cesses.

A signal is a special message sent to a process.

Signals are asynchronous; when a process receives a signal, it processes
the signal immediately, without finishing the current function or even
the current line of code.

Each signal type is specified by its signal number, but in programs, you
usually refer to a signal by its name. (In Linux, these are defined in
/usr /include/bits/signum.h)

When a process receives a signal, it may do one of several things, de-
pending on the signal’s disposition.

— For each signal, there is a default disposition, which determines
what happens to the process if the program does not specify some
other behavior.

— For most signal types, a program may specify some other behavior-
either to ignore the signal or to call a special signal-handler func-
tion to respond to the signal.

— If a signal handler is used, the currently executing program is
paused, the signal handler is executed, and, when the signal han-
dler returns, the program resumes.

e The system sends signals to processes in response to specific conditions.

11

For instance, SIGBUS (bus error), SIGSEGV (segmentation vio-
lation), and SIGFPE (floating point exception) may be sent to a
process that attempts to perform an illegal operation.

The default disposition for these signals it to terminate the process
and produce a core file.

e A process may also send a signal to another process.

One common use of this mechanism is to end another process by
sending it a SIGTERM or SIGKILL signal.

Another common use is to send a command to a running pro-
gram.T'wo "userdefined” signals are reserved for this purpose: SI-

GUSRI1 and SIGUSR2.

The SIGHUP signal is sometimes used for this purpose as well,
commonly to wake up an idling program or cause a program to
reread its configuration files.

e The sigaction function can be used to set a signal disposition.

The first parameter is the signal number. The next two parameters
are pointers to sigaction structures; the first of these contains
the desired disposition for that signal number, while the second
receives the previous disposition.

The most important field in the first or second sigaction structure
is sa_handler. It can take one of three values:

x SIG_DFL, which specifies the default disposition for the sig-
nal.
x SIG_IGN, which specifies that the signal should be ignored.

x A pointer to a signal-handler function.The function should
take one parameter, the signal number, and return void.

e A signal handler should perform the minimum work necessary to re-
spond to the signal, and then return control to the main program (or
terminate the program).

e The main program then checks periodically whether a signal has oc-
curred and reacts accordingly.

e [t is possible for a signal handler to be interrupted by the delivery of
another signal.

12

e Even assigning a value to a global variable can be dangerous because
the assignment may actually be carried out in two or more machine
instructions, and a second signal may occur between them, leaving the
variable in a corrupted state.

e If you use a global variable to flag a signal from a signal-handler func-
tion, it should be of the special type sig_atomic_t.

e The following program skeleton, for instance, uses a signal-handler
function to count the number of times that the program receives SI-
GUSRI, one of the signals reserved for application use.

#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <unistd.h>

sig_atomic_t sigusrl_count = O;

void handler (int signal_number)
{

++sigusrl_count;

3

int main ()

{
struct sigaction sa;
memset (&sa, 0, sizeof (sa));
sa.sa_handler = &handler;
sigaction (SIGUSR1, &sa, NULL);

/* Do some lengthy stuff here. */
/x ... %/

printf ("SIGUSR1 was raised %d times\n", sigusrl_count);
return O;

1.5 Process Termination

e Normally, a process terminates in one of two ways.

13

— Either the executing program calls the exit function, or the pro-
gram’s main function returns. The exit code is the argument
passed to the exit function, or the value returned from main.
The exit function

*

*

*

terminates execution of the current program,
closes any open file descriptors,

and returns the lower eight bits of the value status to the
parent process to retrieve using the wait family of functions.
The parent process will receive a SIGCHLD signal. Any child
processes’ parent process id will be changed to 1 (init).

The exit() function will call the system call _exit(), which
may be called directly to bypass the exit handlers.

— A process may also terminate abnormally, in response to a signal.

*

SIGBUS, SIGSEGV, and SIGFPE signals cause the process
to terminate.

Other signals are used to terminate a process explicitly.

The SIGINT signal is sent to a process when the user attempts
to end it by typing Ctrl+C in its terminal.

The SIGTERM signal is sent by the kill command.

The default disposition for both of these is to terminate the
process.

By calling the abort function, a process sends itself the SIGA-
BRT signal, which terminates the process and produces a core

file.

The most powerful termination signal is SIGKILL, which ends
a process immediately and cannot be blocked or handled by
a program.

$ kill -KILL pid
$ man kill

e To send a signal from a program, use the kill function. Include the
< sys/types.h > and < signal.h > headers if you use the kill function.

e With most shells, it’s possible to obtain the exit code of the most
recently executed program using the special $7 variable.

$ 1s /

14

$ echo $7

0

$ 1s bogusfile

1s: bogusfile: No such file or directory
$ echo $7

1

e You should use exit codes only between zero and 127. Exit codes above
128 have a special meaning-when a process is terminated by a signal,
its exit code is 128 plus the signal number.

1.5.1 Waiting for Process Termination

In some situations, it is desirable for the parent process to wait until one or
more child processes have completed.This can be done with the wait family
of system calls. These functions allow you to wait for a process to finish
executing, and enable the parent process to retrieve information about its
child’s termination.

1.5.2 The wait System Calls

e The simplest such function is called simply wait. It blocks the calling
process until one of its child processes exits (or an error occurs).

e [t returns a status code via an integer pointer argument, from which
you can extract information about how the child process exited.

— For instance, the WEXITSTATUS macro extracts the child pro-
cess’s exit code.

— You can use the WIFEXITED macro to determine from a child
process’s exit status whether that process exited normally (via the
exit function or returning from main) or died from an unhandled
signal.

int main ()

{

int child_status;

/* The argument list to pass to the "1ls" command. */
char* arg_list[] = {

"1s", /* argv[0], the name of the program. */

||_1||

u/u s ’

15

NULL /* The argument list must end with a NULL. */

s

/* Spawn a child process running the "ls" command. Ignore the
returned child process ID. */

spawn ("1ls", arg_list);

/* Wait for the child process to complete. */

wait (&child_status);

if (WIFEXITED (child_status))

printf ("the child process exited normally, with exit code %d\n",
WEXITSTATUS (child_status));

else

printf ("the child process exited abnormally\n");

return O;

3

e The waitpid function can be used to wait for a specific child process
to exit instead of any child process.

e The wait3 function returns CPU usage statistics about the exiting
child process, and the wait4 function allows you to specify additional
options about which processes to wait for.

1.5.3 Zombie Processes

e [f a child process terminates while its parent is calling a wait function,
the child process vanishes and its termination status is passed to its
parent via the wait call.

e What happens when a child process terminates and the parent is not
calling wait?

e The information about its termination, such as whether it exited nor-
mally and, if so, what its exit status is would be lost.

e A zombie process is a process that has terminated but has not been
cleaned up yet. It is the responsibility of the parent process to clean
up its zombie children.The wait functions do this.

e Suppose that a program forks a child process, performs some other
computations, and then calls wait.

— If the child process has not terminated at that point, the parent
process will block in the wait call until the child process finishes.

16

— If the child process finishes before the parent process calls wait,
the child process becomes a zombie.

e When the parent process calls wait, the zombie child’s termination sta-
tus is extracted, the child process is deleted, and the wait call returns
immediately.

e The following program forks a child process, which terminates imme-
diately and then goes to sleep for a minute, without ever cleaning up
the child process.

#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

int main ()

{
pid_t child_pid;

/* Create a child process. */

child_pid = fork O;

if (child_pid > 0) {
/* This is the parent process. Sleep for a minute. */
sleep (60);

}

else {
/* This is the child process. Exit immediately. */
exit (0);

}

return O;

e Run it, and while it’s still running, list the processes on the system by
invoking the following command in another window:

$ ps -e -o pid,ppid,stat,cmd
e What happens when the main make-zombie program ends when the
parent process exits, without ever calling wait? Does the zombie pro-

cess stay around? The init process automatically cleans up any zombie
child processes that it inherits.

17

1.5.4 Cleaning Up Children Asynchronously
e An easy way to clean up child processes is by handling SIGCHLD.

e The following program is what it looks like for a program to use a
SIGCHLD handler to clean up its child processes.

#include <signal.h>
#include <string.h>
#include <sys/types.h>
#include <sys/wait.h>

sig_atomic_t child_exit_status;

void clean_up_child_process (int signal_number)

{
/* Clean up the child process. */
int status;
wait (&status);
/* Store its exit status in a global variable. */
child_exit_status = status;

X

int main O

{
/* Handle SIGCHLD by calling clean_up_child_process. */
struct sigaction sigchld_action;
memset (&sigchld_action, O, sizeof (sigchld_action));
sigchld_action.sa_handler = &clean_up_child_process;
sigaction (SIGCHLD, &sigchld_action, NULL);
/* Now do things, including forking a child process. */
/% .. %/
return O;

X

e Note how the signal handler stores the child process’s exit status in a
global variable, from which the main program can access it. Because
the variable is assigned in a signal handler, its type is sig_atomic_t.

18

	Processes
	Looking at Processes
	Process IDs
	Viewing Active Processes
	Killing a Process

	Process Control
	Attributes

	Creating Processes
	Using system and popen
	Using fork and exec
	Using clone
	Process Scheduling

	Signals
	Process Termination
	Waiting for Process Termination
	The wait System Calls
	Zombie Processes
	Cleaning Up Children Asynchronously

