
0.1 Sockets

• A socket is a bidirectional communication device that can be used to
communicate with another process on the same machine or with a
process running on other machines.

• Internet programs such as Telnet, rlogin, FTP, talk, and the World
Wide Web use sockets.

0.1.1 Socket Concepts

• Specify three parameters:

– communication style;

∗ When data is sent through a socket, it is packaged into chunks
called packets. The communication style determines how
these packets are handled and how they are addressed from
the sender to the receiver.

∗ Connection styles guarantee delivery of all packets in the or-
der they were sent. If packets are lost or reordered by prob-
lems in the network, the receiver automatically requests their
retransmission from the sender.

∗ Datagram styles do not guarantee delivery or arrival order.
Packets may be lost or reordered in transit due to network
errors or other conditions.

– namespace;

∗ A socket namespace specifies how socket addresses are writ-
ten. A socket address identifies one end of a socket connection.
For example, socket addresses

· In the local namespace are ordinary filenames.

· In Internet namespace, a socket address is composed of
the Internet address of a host attached to the network
and a port number. The port number distinguishes among
multiple sockets on the same host.

– protocol;

∗ A protocol specifies how data is transmitted.

∗ Some protocols are TCP/IP, the primary networking proto-
cols used by the Internet; the AppleTalk network protocol;
and the UNIX local communication protocol.

1



0.1.2 System Calls

• These are the system calls involving sockets:

– socket, Creates a socket

– close, Destroys a socket

– connect, Creates a connection between two sockets

– bind, Labels a server socket with an address

– listen, Configures a socket to accept conditions

– accept, Accepts a connection and creates a new socket for the
connection

Sockets are represented by file descriptors.

• Creating and Destroying Sockets

– The socket and close functions create and destroy sockets, re-
spectively.

– When you create a socket, specify the three socket choices: names-
pace, communication style, and protocol.

∗ PF LOCAL or PF UNIX specifies the local namespace,
and PF INET specifies Internet namespaces.

∗ SOCK STREAM for a connection-style socket, or use
SOCK DGRAM for a datagram-style socket.

∗ Each protocol is valid for a particular namespace-style com-
bination. Because there is usually one best protocol for each
such pair, specifying 0 is usually the correct protocol.

– If socket succeeds, it returns a file descriptor for the socket. You
can read from or write to the socket using read, write, and so on,
as with other file descriptors.

– When you are finished with a socket, call close to remove it.

2



0.1.3 Servers

• A server’s life cycle consists of

– the creation of a connection-style (tcp) socket,

– binding an address to its socket,

– placing a call to listen that enables connections to the socket,

– placing calls to accept incoming connections,

– and then closing the socket.

• Data isn’t read and written directly via the server socket; instead, each
time a program accepts a new connection, Linux creates a separate
socket to use in transferring data over that connection.

– An address must be bound to the server’s socket using bind if a
client is to find it.

– When an address is bound to a connection-style socket, it must
invoke listen to indicate that it is a server.

– A server accepts a connection request from a client by invoking
accept.

∗ The call to accept creates a new socket for communicating
with the client and returns the corresponding file descriptor.

∗ The original server socket continues to accept new client con-
nections.

0.1.4 Local Sockets

• Sockets connecting processes on the same computer can use the local
namespace represented by the synonyms PF LOCAL and PF UNIX.

• These are called local sockets or UNIX-domain sockets. Their socket
addresses, specified by filenames, are used only when creating connec-
tions.

• The only permissible protocol for the local namespace is 0.

0.1.5 An Example Using Local Namespace Sockets

• The server program, (see Fig. 1), creates a local namespace socket and
listens for connections on it.

3

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/socket-server.c


#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/socket.h>

#include <sys/un.h>

#include <unistd.h>

/* Read text from the socket and print it out. Continue until the

socket closes. Return non-zero if the client sent a "quit"

message, zero otherwise. */

int server (int client_socket)

{

while (1) {

int length;

char* text;

/* First, read the length of the text message from the socket. If

read returns zero, the client closed the connection. */

if (read (client_socket, &length, sizeof (length)) == 0)

return 0;

/* Allocate a buffer to hold the text. */

text = (char*) malloc (length);

/* Read the text itself, and print it. */

read (client_socket, text, length);

printf ("%s\n", text);

/* Free the buffer. */

free (text);

/* If the client sent the message "quit", we’re all done. */

if (!strcmp (text, "quit"))

return 1;

}

}

int main (int argc, char* const argv[])

{

const char* const socket_name = argv[1];

int socket_fd;

struct sockaddr_un name;

int client_sent_quit_message;

/* Create the socket. */

socket_fd = socket (PF_LOCAL, SOCK_STREAM, 0);

/* Indicate this is a server. */

name.sun_family = AF_LOCAL;

strcpy (name.sun_path, socket_name);

bind (socket_fd, &name, SUN_LEN (&name));

/* Listen for connections. */

listen (socket_fd, 5);

/* Repeatedly accept connections, spinning off one server() to deal

with each client. Continue until a client sends a "quit" message. */

do {

struct sockaddr_un client_name;

socklen_t client_name_len;

int client_socket_fd;

/* Accept a connection. */

client_socket_fd = accept (socket_fd, &client_name, &client_name_len);

/* Handle the connection. */

client_sent_quit_message = server (client_socket_fd);

/* Close our end of the connection. */

close (client_socket_fd);

}

while (!client_sent_quit_message);

/* Remove the socket file. */

close (socket_fd);

unlink (socket_name);

return 0;

}

Figure 1: Local Namespace Socket Server.

4



• The socket-server program takes the path to the socket as its command-
line argument.

• The socket-client program, (see Fig. 2), connects to a local namespace
socket and sends a message. The name path to the socket and the
message are specified on the command line.

#include <stdio.h>

#include <string.h>

#include <sys/socket.h>

#include <sys/un.h>

#include <unistd.h>

/* Write TEXT to the socket given by file descriptor SOCKET_FD. */

void write_text (int socket_fd, const char* text)

{

/* Write the number of bytes in the string, including

NUL-termination. */

int length = strlen (text) + 1;

write (socket_fd, &length, sizeof (length));

/* Write the string. */

write (socket_fd, text, length);

}

int main (int argc, char* const argv[])

{

const char* const socket_name = argv[1];

const char* const message = argv[2];

int socket_fd;

struct sockaddr_un name;

/* Create the socket. */

socket_fd = socket (PF_LOCAL, SOCK_STREAM, 0);

/* Store the server’s name in the socket address. */

name.sun_family = AF_LOCAL;

strcpy (name.sun_path, socket_name);

/* Connect the socket. */

connect (socket_fd, &name, SUN_LEN (&name));

/* Write the text on the command line to the socket. */

write_text (socket_fd, message);

close (socket_fd);

return 0;

}

Figure 2: (socket-client.c) Local Namespace Socket Client.

$ ./socket-server /yourdirectory/socket

In another window, run the client a few times, specifying the same
socket path plus messages to send to the client:

5

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/socket-server.c
http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/socket-client.c


$ ./socket-client /yourdirectory/socket "Hello, world."

$ ./socket-client /yourdirectory/socket "This is a test."

$ ./socket-client /yourdirectory/socket "quit"

0.1.6 Internet-Domain Sockets

• UNIX-domain sockets can be used only for communication between
two processes on the same computer.

• Internet-domain sockets, on the other hand, may be used to connect
processes on different machines connected by a network.

• Sockets connecting processes through the Internet use the Internet
namespace represented by PF INET. The most common protocols
are TCP/IP.

– Internet socket addresses contain two parts: a machine and a port
number.This information is stored in a struct sockaddr in vari-
able.

– Fig. 3 illustrates the use of Internet-domain sockets. The program
obtains the home page from the Web server whose hostname is
specified on the command line.

$ ./socket-inet siber.cankaya.edu.tr

1 Devices

• LINUX, like most operating systems, interacts with hardware devices
via modularized software components called device drivers.

• A device driver hides the peculiarities of a hardware device’s commu-
nication protocols from the operating system and allows the system to
interact with the device through a standardized interface.

• Under Linux, device drivers are part of the kernel and may be either
linked statically into the kernel or loaded on demand as kernel modules.

• Device drivers run as part of the kernel and aren’t directly accessible
to user processes. However, Linux provides a mechanism by which
processes can communicate with a device driver -and through it with
a hardware device- via file-like objects.

6

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/socket-inet.c


#include <stdlib.h>

#include <stdio.h>

#include <netinet/in.h>

#include <netdb.h>

#include <sys/socket.h>

#include <unistd.h>

#include <string.h>

/* Print the contents of the home page for the server’s socket.

Return an indication of success. */

void get_home_page (int socket_fd)

{

char buffer[10000];

ssize_t number_characters_read;

/* Send the HTTP GET command for the home page. */

sprintf (buffer, "GET /\n");

write (socket_fd, buffer, strlen (buffer));

/* Read from the socket. read may not return all the data at one

time, so keep trying until we run out. */

while (1) {

number_characters_read = read (socket_fd, buffer, 10000);

if (number_characters_read == 0)

return;

/* Write the data to standard output. */

fwrite (buffer, sizeof (char), number_characters_read, stdout);

}

}

int main (int argc, char* const argv[])

{

int socket_fd;

struct sockaddr_in name;

struct hostent* hostinfo;

/* Create the socket. */

socket_fd = socket (PF_INET, SOCK_STREAM, 0);

/* Store the server’s name in the socket address. */

name.sin_family = AF_INET;

/* Convert from strings to numbers. */

hostinfo = gethostbyname (argv[1]);

if (hostinfo == NULL)

return 1;

else

name.sin_addr = *((struct in_addr *) hostinfo->h_addr);

/* Web servers use port 80. */

name.sin_port = htons (80);

/* Connect to the web server */

if (connect (socket_fd, &name, sizeof (struct sockaddr_in)) == -1) {

perror ("connect");

return 1;

}

/* Retrieve the server’s home page. */

get_home_page (socket_fd);

return 0;

}

Figure 3: Read from a WWW Server.

• These objects appear in the file system, and programs can open them,
read from them, and write to them practically as if they were normal
files.

1.1 Device Types

• Device files aren’t ordinary files -they do not represent regions of data
on a disk based file system.

• Data read from or written to a device file is communicated to the
corresponding device driver, and from there to the underlying device.
Device files come in two flavors:

7



– A character device represents a hardware device that reads or
writes a serial stream of data bytes. Serial and parallel ports,
tape drives, terminal devices, and sound cards are examples of
character devices.

– A block device represents a hardware device that reads or writes
data in fixed-size blocks. Unlike a character device, a block device
provides random access to data stored on the device. A disk drive
is an example of a block device.

1.2 Device Numbers

• Linux identifies devices using two numbers: the major device num-
ber and the minor device number.

• The major device number specifies which driver the device corresponds
to. The same major device number may correspond to two different
drivers, one a character device and one a block device.

• Minor device numbers distinguish individual devices or components
controlled by a single driver.

1.3 Device Entries

• A device entry is in many ways the same as a regular file.

• If you try to copy a device entry using cp, though, you’ll read bytes
from the device (if the device supports reading) and write them to the
destination file.

• If you try to overwrite a device entry, you’ll write bytes to the corre-
sponding device instead.

• You can create a device entry in the file system using the mknod
command.

• Creating a device entry in the file system doesn’t automatically imply
that the corresponding device driver or hardware device is present or
available; the device entry is merely a portal for communicating with
the driver, if it’s there.

$ mknod ./lp0 c 6 0

$ ls -l lp0

$ rm ./lp0

8



1.3.1 The /dev Directory

• By convention, a GNU/Linux system includes a directory /dev con-
taining the full complement of character and block device entries for
devices that Linux knows about.

• Entries in /dev have standardized names corresponding to major and
minor device numbers.

$ ls -l /dev/hda /dev/hda1

$ ls -l /dev/lp0

• In most cases, you should not use mknod to create your own device
entries. Use the entries in /dev instead.

1.3.2 Accessing Devices by Opening Files

• How do you use these devices? In the case of character devices, it can
be quite simple: Open the device as if it were a normal file, and read
from or write to it.

$ cat document.txt > /dev/lp0

In a program, sending data to a device is

int fd = open ("/dev/lp0", O_WRONLY);

write (fd, buffer, buffer_length);

close (fd);

1.4 Hardware Devices

• Some common block (character) devices are listed in Fig. 4 (5).

• A terminal program might access a modem directly through a serial
port device. Data written to or read from the devices is transmitted
via the modem to a remote computer.

• A program can write directly to the first virtual terminal writing data
to /dev/tty1. Terminal windows running in a graphical environment,
or remote login terminal sessions, are not associated with virtual ter-
minals; instead, they’re associated with pseudo-terminals.

• A program can play sounds through the system’s sound card by sending
audio data to /dev/audio.

$ cat /usr/share/sndconfig/sample.au > /dev/audio

9



Figure 4: Some common block devices.

Figure 5: Some common character devices.

10



1.5 Special Devices

Linux also provides several character devices that don’t correspond to hard-
ware devices. These entries all use the major device no. 1, which is associated
with the Linux kernel’s memory device instead of a device driver.

/dev/null

• The entry /dev/null, the null device, is very handy. It serves two
purposes;

– Linux discards any data written to /dev/null. Specify /dev/null
as an output file in some context where the output is unwanted.

$ verbose_command > /dev/null

– Reading from /dev/null always results in an end-of-file. For in-
stance, if you open a file descriptor to /dev/null using open and
then attempt to read from the file descriptor, read will read no
bytes and will return 0.

$ cp /dev/null empty-file

$ ls -l empty-file

/dev/zero

The device entry /dev/zero behaves as if it were an infinitely long file filled
with 0 bytes. As much data as you’d try to read from /dev/zero, Linux
generates enough 0 bytes.

$ hexdump -v /dev/zero

$ hexdump anyfile

/dev/full

The entry /dev/full behaves as if it were a file on a file system that has no
more room. A write to /dev/full fails and sets errno to ENOSPC, which
ordinarily indicates that the written-to device is full.

$ cp /etc/fstab /dev/full

cp: writing ’/dev/full’: No space left on device

11



Random Number Devices

• The special devices /dev/random and /dev/urandom provide ac-
cess to the Linux kernel’s built-in random number generation facility.

• Most software functions for generating random numbers, such as the
rand function in the standard C library, actually generate pseudoran-
dom numbers.

• Although these numbers satisfy some properties of random numbers,
they are reproducible: If you start with the same seed value, you’ll
obtain the same sequence of pseudorandom numbers every time.

• By measuring the time delay between your input actions, such as
keystrokes and mouse movements, Linux is capable of generating an
unpredictable stream of high-quality random numbers.You can access
this stream by reading from /dev/random and /dev/urandom. The
data that you read is a stream of randomly generated bytes.

$ od -t a (d2,x1) /dev/random

$ od -t x1 /dev/urandom

$ man od

• Using random numbers from /dev/random in a program is easy, too.
The program in Fig. 6 presents a function that generates a random
number using bytes read from in /dev/random.

• Remember that /dev/random blocks a read until there is enough
randomness available to satisfy it; you can use /dev/urandom instead
if fast execution is more important and you can live with the potential
lower quality of random numbers.

Loopback Devices

• A loopback device enables you to simulate a block device using an
ordinary disk file.

• Imagine a disk drive device for which data is written to and read from
a file named disk-image rather than to and from the tracks and sectors
of an actual physical disk drive or disk partition.

• A loopback device enables you to use a file in this manner.

• Loopback devices are named /dev/loop0, /dev/loop1, and so on.

12

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/random_number.c


#include <assert.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <fcntl.h>

#include <unistd.h>

/* Return a random integer between MIN and MAX, inclusive. Obtain

randomness from /dev/random. */

int random_number (int min, int max)

{

/* Store a file descriptor opened to /dev/random in a static

variable. That way, we don’t need to open the file every time

this function is called. */

static int dev_random_fd = -1;

char* next_random_byte;

int bytes_to_read;

unsigned random_value;

/* Make sure MAX is greater than MIN. */

assert (max > min);

/* If this is the first time this function is called, open a file

descriptor to /dev/random. */

if (dev_random_fd == -1) {

dev_random_fd = open ("/dev/random", O_RDONLY);

assert (dev_random_fd != -1);

}

/* Read enough random bytes to fill an integer variable. */

next_random_byte = (char*) &random_value;

bytes_to_read = sizeof (random_value);

/* Loop until we’ve read enough bytes. Since /dev/random is filled

from user-generated actions, the read may block, and may only

return a single random byte at a time. */

do {

int bytes_read;

bytes_read = read (dev_random_fd, next_random_byte, bytes_to_read);

bytes_to_read -= bytes_read;

next_random_byte += bytes_read;

} while (bytes_to_read > 0);

/* Compute a random number in the correct range. */

return min + (random_value % (max - min + 1));

}

Figure 6: Function to Generate a Random Number.

13



• A loopback device can be used in the same way as any other block
device. In particular, you can construct a file system on the device and
then mount that file system as you would mount the file system on an
ordinary disk or partition (virtual file system).

• To construct a virtual file system and mount it with a loopback device,
follow these steps:

1. Create an empty file to hold the virtual file system. To construct
a 10MB file named disk-image, invoke the following:

$ dd if=/dev/zero of=/yourdirectory/disk-image count=20480

$ ls -l /yourdirectory/disk-image

2. The file that you’ve just created is filled with 0 bytes. Before
you mount it, you must construct a file system. This sets up the
various control structures needed to organize and store files, and
builds the root directory.

$ mke2fs -q /yourdirectory/disk-image

3. Mount the file system using a loopback device.

$ mkdir /yourdirectory/virtual-fs

$ mount -o loop=/dev/loop0 /yourdirectory/disk-image

/yourdirectory/virtual-fs

$ df -h /yourdirectory/virtual-fs

$ cd /yourdirectory/virtual-fs

$ echo "Hello, world!" > test.txt

$ ls -l

$ cat test.txt

$ cd /yourdirectory

$ umount /yourdirectory/virtual-fs

1.6 ioctl

• The ioctl system call is an all-purpose interface for controlling hard-
ware devices.

– The first argument to ioctl is a file descriptor, which should be
opened to the device that you want to control.

– The second argument is a request code that indicates the operation
that you want to perform.

14



#include <fcntl.h>

#include <linux/cdrom.h>

#include <sys/ioctl.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <unistd.h>

int main (int argc, char* argv[])

{

/* Open a file descriptor to the device specified on the command line. */

int fd = open (argv[1], O_RDONLY);

/* Eject the CD-ROM. */

ioctl (fd, CDROMEJECT);

/* Close the file descriptor. */

close (fd);

return 0;

}

Figure 7: Eject a CD-ROM.

• The program in Fig. 7 presents a short program that ejects the disk in
a CD-ROM drive (if the drive supports this).

$ ./cdrom-eject /dev/hdc

15

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/cdrom-eject.c

	Sockets
	Socket Concepts
	System Calls
	Servers
	Local Sockets
	An Example Using Local Namespace Sockets
	Internet-Domain Sockets

	Devices
	Device Types
	Device Numbers
	Device Entries
	The /dev Directory
	Accessing Devices by Opening Files

	Hardware Devices
	Special Devices
	ioctl
	Device Drivers
	The Role of the Device Driver

	Splitting the Kernel


