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1.1

Device Drivers

Device drivers take on a special role in the Linux kernel. They are
distinct ”black boxes” that make a particular piece of hardware respond
to a well-defined internal programming interface; they hide completely
the details of how the device works.

User activities are performed by means of a set of standardized calls
that are independent of the specific driver; mapping those calls to
device-specific operations that act on real hardware is then the role
of the device driver. This programming interface is such that drivers
can be built separately from the rest of the kernel and ”plugged in” at
runtime when needed.

Each driver is different; as a driver writer, you need to understand your
specific device well. But most of the principles and basic techniques
are the same for all drivers.

The Role of the Device Driver

The role of a device driver is providing mechanism, not policy. The
distinction between mechanism and policy is one of the best ideas be-
hind the Unix design. Most programming problems can indeed be split
into two parts:

— what capabilities are to be provided (the mechanism)
— how those capabilities can be used (the policy).
If the two issues are addressed by different parts of the program, or

even by different programs altogether, the software package is much
easier to develop and to adapt to particular needs.

For example, Unix management of the graphic display is split between

— the X server, which knows the hardware and offers a unified in-
terface to user programs,

— and the window and session managers, which implement a partic-
ular policy without knowing anything about the hardware.

People can use the same window manager on different hardware, and
different users can run different configurations on the same worksta-
tion. Even completely different desktop environments, such as KDE
and GNOME, can coexist on the same system.



e Another example is the layered structure of TCP/IP networking:

— the operating system offers the socket abstraction, which imple-
ments no policy regarding the data to be transferred,

— while different servers are in charge of the services (and their as-
sociated policies).

e When writing drivers, a programmer should pay particular attention

to this fundamental concept: write kernel code to access the hardware,
but don’t force particular policies on the user, since different users have
different needs.

— The driver should deal with making the hardware available, leav-
ing all the issues about how to use the hardware to the applica-
tions.

— A driver, then, is flexible if it offers access to the hardware ca-
pabilities without adding constraints. Sometimes, however, some
policy decisions must be made. For example, a digital I/O driver
may only offer byte-wide access to the hardware in order to avoid
the extra code needed to handle individual bits.

e Policy-free drivers have a number of typical characteristics.

1.2

— These include support for both synchronous and asynchronous
operation,

— the ability to be opened multiple times,
— the ability to exploit the full capabilities of the hardware,

— and the lack of software layers to ”simplify things” or provide
policy-related operations.

Drivers of this sort not only work better for their end users, but also
turn out to be easier to write and maintain as well. Being policy-free
is actually a common target for software designers.

Splitting the Kernel

In a Unix system, several concurrent processes attend to different tasks.
Each process asks for system resources, be it computing power, mem-
ory, network connectivity, or some other resource. The kernel is the
big chunk of executable code in charge of handling all such requests.
Although the distinction between the different kernel tasks isn’t always
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Figure 1: Split view of the kernel.

clearly marked, the kernel’s role can be split (as shown in Fig. 1) into
the following parts:

1. Process management

— The kernel is in charge of creating and destroying processes
and handling their connection to the outside world (input and
output).

— Communication among different processes (through signals,
pipes, or interprocess communication primitives) is basic to
the overall system functionality and is also handled by the
kernel.

— In addition, the scheduler, which controls how processes share
the CPU, is part of process management. More generally, the
kernel’s process management activity implements the abstrac-
tion of several processes on top of a single CPU or a few of
them.

2. Memory management



— The computer’s memory is a major resource, and the policy
used to deal with it is a critical one for system performance.

— The kernel builds up a virtual addressing space for any and
all processes on top of the limited available resources.

— The different parts of the kernel interact with the memory-
management subsystem through a set of function calls, rang-
ing from the simple malloc/free pair to much more complex
functionalities.

3. Filesystems

— Unix is heavily based on the filesystem concept; almost ev-
erything in Unix can be treated as a file.

— The kernel builds a structured filesystem on top of unstruc-
tured hardware, and the resulting file abstraction is heavily
used throughout the whole system.

— In addition, Linux supports multiple filesystem types, that
is, different ways of organizing data on the physical medium.
For example, disks may be formatted with the Linux-standard
ext3 filesystem, the commonly used FAT filesystem or several
others.

4. Device control

— Almost every system operation eventually maps to a physical
device. With the exception of the processor, memory, and a
very few other entities, any and all device control operations
are performed by code that is specific to the device being
addressed.

— That code is called a device driver.

— The kernel must have embedded in it a device driver for every
peripheral present on a system, from the hard drive to the
keyboard and the tape drive.

5. Networking

— Networking must be managed by the operating system, be-
cause most network operations are not specific to a process:
incoming packets are asynchronous events.

— The packets must be collected, identified, and dispatched be-
fore a process takes care of them.

— The system is in charge of delivering data packets across pro-
gram and network interfaces, and it must control the exe-
cution of programs according to their network activity. Ad-
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ditionally, all the routing and address resolution issues are
implemented within the kernel.

1.2.1 Loadable Modules

e You can add functionality to the kernel (and remove functionality as

1.3

well) while the system is up and running. Each piece of code that can
be added to the kernel at runtime is called a module .

The Linux kernel offers support for quite a few different types (or
classes) of modules, including, but not limited to, device drivers. Each
module is made up of object code (not linked into a complete exe-
cutable) that can be dynamically linked to the running kernel by the
insmod program and can be unlinked by the rmmod program.

Figure 1 identifies different classes of modules in charge of specific tasks
(a module is said to belong to a specific class according to the func-
tionality it offers). The placement of modules in Figure 1.5 covers the
most important classes, but is far from complete because more and
more functionality in Linux is being modularized.

Classes of Devices and Modules

The Linux way of looking at devices distinguishes between three fun-
damental device types. Each module usually implements one of these
types, and thus is classifiable as a char module, a block module, or a
network module.

This division of modules into different types, or classes, is not a rigid
one; the programmer can choose to build huge modules implementing
different drivers in a single chunk of code. Good programmers, nonethe-
less, usually create a different module for each new functionality they
implement, because decomposition is a key element of scalability and
extendability.

There are other ways of classifying driver modules that are orthogonal
to the above device types.

— In general, some types of drivers work with additional layers of
kernel support functions for a given type of device. For example,
one can talk of universal serial bus (USB) modules, serial modules,
SCSI modules, and so on.



— Every USB device is driven by a USB module that works with
the USB subsystem, but the device itself shows up in the sys-
tem as a char device (a USB serial port, say), a block device (a
USB memory card reader), or a network device (a USB Ethernet
interface).

e Other classes of device drivers have been added to the kernel in re-
cent times, including FireWire drivers and 120 drivers. In the same
way that they handled USB and SCSI drivers, kernel developers col-
lected class-wide features and exported them to driver implementers to
avoid duplicating work and bugs, thus simplifying and strengthening
the process of writing such drivers.

e In addition to device drivers, other functionalities, both hardware and
software, are modularized in the kernel. One common example is
filesystems. A filesystem type determines how information is organized
on a block device in order to represent a tree of directories and files.
Such an entity is not a device driver, in that there’s no explicit device
associated with the way the information is laid down; the filesystem
type is instead a software driver, because it maps the low-level data
structures to high-level data structures.

e Kernel programmers should be aware that the development process
changed with 2.6. The 2.6 series is now accepting changes that pre-
viously would have been considered too large for a ”stable” kernel.
Among other things, that means that internal kernel programming in-
terfaces can change, some modules don’t compile under earlier versions.

Character devices

e A character (char) device is one that can be accessed as a stream of
bytes (like a file); a char driver is in charge of implementing this be-
havior. Such a driver usually implements at least the open, close, read,
and write system calls.

e The text console (/dev/console) and the serial ports (/dev/ttySO and
friends) are examples of char devices, as they are well represented by the

stream abstraction. Char devices are accessed by means of filesystem
nodes, such as /dev/ttyl and /dev/Ip0.

e The only relevant difference between a char device and a regular file is
that you can always move back and forth in the regular file, whereas



most char devices are just data channels, which you can only access
sequentially.

Block devices

e Like char devices, block devices are accessed by filesystem nodes in the
/dev directory. A block device is a device (e.g., a disk) that can host a
filesystem.

e In most Unix systems, a block device can only handle I/O operations
that transfer one or more whole blocks, which are usually 512 bytes (or
a larger power of two) bytes in length. Linux, instead, allows the ap-
plication to read and write a block device like a char device (it permits
the transfer of any number of bytes at a time).

e As a result, block and char devices differ only in the way data is man-
aged internally by the kernel, and thus in the kernel/driver software
interface. Like a char device, each block device is accessed through a
filesystem node, and the difference between them is transparent to the
user.

Network interfaces

e A network interface is in charge of sending and receiving data pack-
ets, driven by the network subsystem of the kernel, without knowing
how individual transactions map to the actual packets being trans-
mitted. Many network connections (especially those using TCP) are
stream-oriented, but network devices are, usually, designed around the
transmission and receipt of packets. A network driver knows nothing
about individual connections; it only handles packets.

e Not being a stream-oriented device, a network interface isn’t easily
mapped to a node in the filesystem, as /dev/ttyl is. The Unix way
to provide access to interfaces is still by assigning a unique name to
them (such as eth0), but that name doesn’t have a corresponding entry
in the filesystem. Communication between the kernel and a network
device driver is completely different from that used with char and block
drivers. Instead of read and write, the kernel calls functions related to
packet transmission.



1.3.1 Building and Running Modules

e Introducing all the essential concepts about modules and kernel pro-
gramming. We build and run a complete (if relatively useless) module,
and look at some of the basic code shared by all modules (only about
modules, without referring to any specific device class).

1.4 The Hello World Module

The following code is a complete ”hello world” module:

#include <linux/init.h>
#include <linux/module.h>
MODULE_LICENSE("Dual BSD/GPL");

static int hello_init(void)

{
printk (KERN_ALERT "Hello, world\n");
return O;
+
static void hello_exit(void)
{
printk (KERN_ALERT "Goodbye, cruel world\n");
+

module_init (hello_init);
module_exit(hello_exit);

e This module defines two functions,

— one to be invoked when the module is loaded into the kernel
(hello_init)

— and one for when the module is removed (hello_exit).

e The module_init and module_exit lines use special kernel macros to
indicate the role of these two functions. Another special macro
(MODULE_LICENSE) is used to tell the kernel that this module
bears a free license; without such a declaration, the kernel complains
when the module is loaded.

e The printk function is defined in the Linux kernel and made available
to modules; it behaves similarly to the standard C library function
printf. The kernel needs its own printing function because it runs by
itself, without the help of the C library.



e The module can call printk because, after insmod has loaded it, the
module is linked to the kernel and can access the kernel’s public symbols
(functions and variables).

e The string K ERN_ALFERT is the priority of the message. We've spec-
ified a high priority in this module, because a message with the default
priority might not show up anywhere useful, depending on the kernel
version you are running, the version of the klogd daemon, and your
configuration.

e You can test the module with the insmod and rmmod utilities, as
shown below. Note that only the superuser can load and unload a
module.

[root@ozdogan week7]# make
make -C /1lib/modules/2.6.19.2/build M=/home/ozdogan/week7 modules
make[1]: Entering directory ‘/usr/src/kernels/linux-2.6.19.2’°
CC [M] /home/ozdogan/week7/hello.o
Building modules, stage 2.
MODPOST 1 modules
cc /home/ozdogan/week7/hello.mod.o
LD [M] /home/ozdogan/week7/hello.ko
make[1]: Leaving directory ‘/usr/src/kernels/linux-2.6.19.2°
% su
root# insmod ./hello.ko
Hello, world
root# rmmod hello
Goodbye cruel world
root#

e For the above sequence of commands to work, you must have a prop-
erly configured and built kernel tree in a place where the makefile is
able to find it (/usr/src/linux-2.6.10 in the example shown). Accord-
ing to the mechanism your system uses to deliver the message lines,
your output may be different. In particular, the previous screen dump
was taken from a text console; if you are running insmod and rmmod
from a terminal emulator running under the window system, you won't
see anything on your screen. The message goes to one of the system
log files, such as /var/log/messages (the name of the actual file varies
between Linux distributions).



1.5

Kernel Modules Versus Applications

While most small and medium-sized applications perform a single task
from beginning to end, every kernel module just registers itself in or-
der to serve future requests, and its initialization function terminates
immediately. In other words, the task of the module’s initialization
function is to prepare for later invocation of the module’s functions;
it’s as though the module were saying, "Here I am, and this is what I
can do.”

The module’s exit function (hello_exit in the example) gets invoked just
before the module is unloaded. It should tell the kernel, ”I’'m not there
anymore; don’t ask me to do anything else.” This kind of approach to
programming is similar to event-driven programming, but while not all
applications are event-driven, each and every kernel module is.

Another major difference between event-driven applications and kernel
code is in the exit function: whereas an application that terminates
can be lazy in releasing resources or avoids clean up altogether, the exit
function of a module must carefully undo everything the init function
built up, or the pieces remain around until the system is rebooted.

As a programmer, you know that an application can call functions
it doesn’t define: the linking stage resolves external references using
the appropriate library of functions. printf is one of those callable
functions and is defined in [ibc.

A module, on the other hand, is linked only to the kernel, and the
only functions it can call are the ones exported by the kernel; there are
no libraries to link to. The printk function used in hello.c earlier, for
example, is the version of print f defined within the kernel and exported
to modules. It behaves similarly to the original function, with a few
minor differences, the main one being lack of floating-point support.

Figure 1.5 shows how function calls and function pointers are used in
a module to add new functionality to a running kernel.

Because no library is linked to modules, source files should never include
the usual header files, < stdarg.h > and very special situations being
the only exceptions. Only functions that are actually part of the kernel
itself may be used in kernel modules. Anything related to the kernel
is declared in headers found in the kernel source tree you have set up
and configured; most of the relevant headers live in include/linux and
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Figure 2: Linking a module to the kernel.

include/asm, but other subdirectories of include have been added to
host material associated to specific kernel subsystems.

e Another important difference between kernel programming and appli-
cation programming is in how each environment handles faults: whereas
a segmentation fault is harmless during application development and a
debugger can always be used to trace the error to the problem in the
source code, a kernel fault kills the current process at least, if not the
whole system.

1.5.1 Concurrency in the Kernel

e One way in which kernel programming differs greatly from conven-
tional application programming is the issue of concurrency. Most ap-
plications, with the notable exception of multithreading applications,
typically run sequentially, from the beginning to the end, without any
need to worry about what else might be happening to change their
environment.

e Kernel code does not run in such a simple world, and even the simplest
kernel modules must be written with the idea that many things can be
happening at once.
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e There are a few sources of concurrency in kernel programming.

— Naturally, Linux systems run multiple processes, more than one
of which can be trying to use your driver at the same time.

— Most devices are capable of interrupting the processor; interrupt
handlers run asynchronously and can be invoked at the same time
that your driver is trying to do something else.

— Several software abstractions (such as kernel timers) run asyn-
chronously as well.

— Moreover, of course, Linux can run on symmetric multiprocessor
(SMP) systems, with the result that your driver could be executing
concurrently on more than one CPU.

— Finally, in 2.6, kernel code has been made preemptible; this change
causes even uniprocessor systems to have many of the same con-
currency issues as multiprocessor systems.

e As aresult, Linux kernel code, including driver code, must be reentrant
(it must be capable of running in more than one context at the same
time). Data structures must be carefully designed to keep multiple
threads of execution separate, and the code must take care to access
shared data in ways that prevent corruption of the data.

e Writing code that handles concurrency and avoids race conditions re-
quires thought and can be tricky.

1.5.2 A Few Other Details

e Applications are laid out in virtual memory with a very large stack
area. The stack, of course, is used to hold the function call history and
all automatic variables created by currently active functions.

e The kernel, instead, has a very small stack; it can be as small as a single,
4096-byte page. Your functions must share that stack with the entire
kernel-space call chain. Thus, it is never a good idea to declare large
automatic variables; if you need larger structures, you should allocate
them dynamically at call time.

e Often, as you look at the kernel API, you will encounter function names
starting with a double underscore (__). Functions so marked are gen-
erally a low-level component of the interface and should be used with
caution. Essentially, the double underscore says to the programmer:
"If you call this function, be sure you know what you are doing.”
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e Kernel code cannot do floating point arithmetic. Enabling floating
point would require that the kernel save and restore the floating point
processor’s state on each entry to, and exit from, kernel space (at least,
on some architectures). Given that there really is no need for floating
point in kernel code, the extra overhead is not worthwhile.

1.6 Compiling and Loading
Compiling Modules

e If you do not have a kernel tree handy, or have not yet configured
and built that kernel, now is the time to go do it. You cannot build
loadable modules for a 2.6 kernel without this tree on your filesystem.
It is also helpful (though not required) to be actually running the kernel
that you are building for. Once you have everything set up, creating
a makefile for your module is straightforward. In fact, for the "hello
world” example shown earlier in this chapter, a single line will suffice:

obj-m := hello.o

The assignment above states that there is one module to be built from
the object file hello.o. The resulting module is named hello.kO after
being built from the object file. If, instead, you have a module called
module.ko that is generated from two source files (called, say, filel.c
and file2.c), the correct incantation would be:

obj-m := module.o
module-objs := filel.o file2.o0

Makefile:

# If KERNELRELEASE is defined, we’ve been invoked from the
# kernel build system and can use its language.
obj-m := hello.o

ifneq ($(KERNELRELEASE),)
obj-m := hello.o

# Otherwise we were called directly from the command

# line; invoke the kernel build system.
else
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KERNELDIR 7= /lib/modules/$(shell uname -r)/build
PWD := $(shell pwd)

default:
$ (MAKE) -C $(KERNELDIR) M=$(PWD) modules

endif

1.6.1 Loading and Unloading Modules

e After the module is built, the next step is loading it into the kernel.
The “insmod” program loads the module code and data into the kernel,
which, in turn, performs a function similar to that of Id, in that it links
any unresolved symbol in the module to the symbol table of the kernel.
Unlike the linker, however, the kernel doesn’t modify the module’s disk
file, but rather an in-memory copy.

e How the kernel supports insmod: it relies on a system call defined in
kernel /module.c. The function sys_init_module allocates kernel mem-
ory to hold a module (this memory is allocated with vmalloc); it then
copies the module text into that memory region, resolves kernel refer-
ences in the module via the kernel symbol table, and calls the module’s
initialization function to get everything going.

e If you actually look in the kernel source, you’ll find that the names of
the system calls are prefixed with sys_. This is true for all system calls
and no other functions; it’s useful to keep this in mind when grepping
for the system calls in the sources.

e The “modprobe” utility is worth a quick mention. modprobe, like ins-
mod, loads a module into the kernel. It differs in that it will look at the
module to be loaded to see whether it references any symbols that are
not currently defined in the kernel. If any such references are found,
modprobe looks for other modules in the current module search path
that define the relevant symbols. When modprobe finds those modules
(which are needed by the module being loaded), it loads them into the
kernel as well. If you use insmod in this situation instead, the command
fails with an "unresolved symbols” message left in the system logfile.

e Modules may be removed from the kernel with the “rmmod” utility.
Note that module removal fails if the kernel believes that the module is
still in use (e.g., a program still has an open file for a device exported by
the modules), or if the kernel has been configured to disallow module
removal. It is possible to configure the kernel to allow ”forced” removal
of modules, even when they appear to be busy.
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Figure 3: Stacking of parallel port driver modules.

The “lsmod” program produces a list of the modules currently loaded in
the kernel. Some other information, such as any other modules making
use of a specific module, is also provided. Ismod works by reading the
/proc/modules virtual file. Information on currently loaded modules
can also be found in the sysfs virtual filesystem under /sys/module.

The Kernel Symbol Table

We’ve seen how insmod resolves undefined symbols against the table
of public kernel symbols. The table contains the addresses of global
kernel items (functions and variables) that are needed to implement
modularized drivers.

When a module is loaded, any symbol exported by the module becomes
part of the kernel symbol table. In the usual case, a module implements
its own functionality without the need to export any symbols at all. You
need to export symbols, however, whenever other modules may benefit
from using them.

New modules can use symbols exported by your module, and you can
stack new modules on top of other modules. Module stacking is imple-
mented in the mainstream kernel sources as well: the msdos filesystem
relies on symbols exported by the fat module, and each input USB
device module stacks on the usbcore and input modules.

Stacking in the parallel port subsystem is shown in Figure 1.7; the
arrows show the communications between the modules and with the
kernel programming interface.
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e The Linux kernel header files provide a convenient way to manage the
visibility of your symbols, thus reducing namespace pollution (filling the
namespace with names that may conflict with those defined elsewhere
in the kernel) and promoting proper information hiding. If your module
needs to export symbols for other modules to use, the following macros
should be used.

EXPORT_SYMBOL (name) ;
EXPORT_SYMBOL_GPL (name) ;
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