

Abstract
My CENG 471 Parallel Programing course’s project is about Parallel Programming with .NET Framework 4.0. This report covers some of aspects and benefits of parallel programming methodology in .NET. Also it presents how to compute value of pi with parallel .NET.
Introduction
	Parallel Programming with .NET Framework 4.0 provides new runtime and new class library tools that makes parallelization more efficient and easier than before. In .NET the programmer do not has to work with directly threads or thread pool, which means it requires higher – level manipulations with threads and data.
	Parallelization with .NET 4.0 is a shared memory programming. It comes with 2 main libraries: Task Parallel Library (TPL) and Parallel Language Integrated Query (PLINQ). Task Parallel Library is responsible for data and task parallelism, Parallel Language Integrated Query is the parallel implementation of LINQ to objects.
	TPL is a public API to System.Threading.Parallel and System.Threading.Tasks namespaces, in which involves 2 main classes: Task and Parallel. In Task class, task operations are defined. In Parallel class, there some are functions like Parallel.For and Parallel.Foreach which provides parallelization for loops. Also, there are some task options defined like implicit creation of a task.
PLINQ is a parallel implementation of LINQ to Objects. PLINQ implements the complete set of LINQ standard query operators as extension methods for the System.Linq namespace and has additional operators for parallel operations. PLINQ queries are also scale in the degree of parallelism based on the capabilities of the host computer.
Computation of π Value
	Calculation of PI becomes major mathematical phenomenon throughout history. After technology developed and more precision which can’t be reached by hand, for pi value is needed; computers are used. There are many implementations of many equations that each one of them gives a precision in a particular range to compute pi. Today the pi was calculated to 5 trillion [1] digits by a homemade super computer with specifically implemented software called y – cruncher that uses very complex formulas and algorithms. [2]
	In my lab project I didn’t needed those astronomical numbers, so I used an approach similar to we used in our lab section. The algorithm to compute pi used here is based on generating random numbers in a unit length square and counting the number of points that fall within the largest circle inscribed in the square. Since the area of the circle (πr2) is equal to π/4, and the area of the square is 1 × 1, the fraction of random points that fall in the circle should approach π/4. The method gives a precision up to 130 digits. [3]
Implementation of the method in C# is below:
With For loop;
public static double SerialForPi(int numSteps)
{
double sum = 0.0;
double step = 1.0 / (double)numSteps;

for (int i = 0; i < numSteps; i++)
{
double x = (i + 0.5) * step;
sum = sum + 4.0 / (1.0 + x * x);
}

return step * sum;
}
With LINQ;
public static double SerialLinqPi(int numSteps)
{
double step = 1.0 / (double)numSteps;
return (from i in Enumerable.Range(0, numSteps)
let x = (i + 0.5) * step
select 4.0 / (1.0 + x * x)).Sum() * step;
}	
Parallel Computation of π with .NET
Parallelization of pi value’s computation is very simple with .NET Framework. Code segments and explanations as follow (See appendix for tables and graphs).
Using Parallel Class
For loop is parallelized with this class. Code is below.
public static double ParallelForPi(int numSteps)
{
double sum = 0.0;
double step = 1.0 / (double)numSteps;
object monitor = new object();

Parallel.For(0, numSteps, () => 0.0, (i, state, local) =>
{
double x = (i + 0.5) * step;
return local + 4.0 / (1.0 + x * x);
}, local => { lock (monitor) sum += local; });

return step * sum;
}

Method Definition:
public static ParallelLoopResult For<TLocal>(
int fromInclusive,
int toExclusive,
Func<TLocal> localInit,
Func<int, ParallelLoopState, TLocal, TLocal> body,
Action<TLocal> localFinally
)
· (int) fromInclusive: The start index, inclusive.
· (int) toExclusive: The end index, exclusive.
· (Func<TLocal>) localInit: The function delegate that returns the initial state of the local data for each thread.
· (Func<int, ParallelLoopState, TLocal, TLocal>) body: The delegate that is invoked once per iteration.
· (Action<TLocal>) localFinally: The delegate that performs a final action on the local state of each thread.
Each for iteration has a local sum that is added at the end of loop to the global sum.
Using PLINQ
	LINQ query is parallelized with creation of enumerable range when defining iteration boundary. The commented line is another method for parallelization for the method. However, it is not efficient as used one. Also .WithDegreeOfParallelism<> provides a flexibility to decide how many cores or processors do we want to use.
public static double ParallelLinqPi(int numSteps, int numProcs)
{
double step = 1.0 / (double)numSteps;
return (from i in ParallelEnumerable.Range(0, numSteps) // faster
//from i in Enumerable.Range(0, numSteps).AsParallel()
.WithDegreeOfParallelism(numProcs)
let x = (i + 0.5) * step
select 4.0 / (1.0 + x * x)).Sum() * step;
}

Using Tasks
	Using tasks library is not crucial in this project. However, I used it anyway because I saw that it makes the program run more smoothly.
There are 3 tasks in this code and all of them are created via Factory class. First task is manages the function that calculates pi. Second task is a kind of scheduler that takes over after first task and makes some changes in user interface. If there is an error, it’s been thrown in this task. Third task is a child task of the first one. It basically writes pi and elapsed time values to the related labels. It also arranges the label values by showing the related label after task finishes. Normally, you have to wait for all procedure. Task codes are below:
// Nested Tasks
private void createTasks(int numSteps, int numProcs)
{
// Parent Task
var piTasks = Task.Factory.StartNew(() =>
{
double piValue;
TimeSpan elapsed;

// No tasks are defined here. Just send actions (code between brackets) to the Work method.
// Only setValue method creates a child task attached to parent.
elapsed = Work(() =>
{
piValue = ComputePi.SerialForPi(numSteps);
setValue(lblSerialForPI, piValue.ToString());
});
setValue(lblSerialForTime, elapsed.ToString());

elapsed = Work(() =>
{
piValue = ComputePi.ParallelForPi(numSteps);
setValue(lblParallelForPI, piValue.ToString());
});
setValue(lblParallelForTime, elapsed.ToString());

elapsed = Work(() =>
{
piValue = ComputePi.SerialLinqPi(numSteps);
setValue(lblSerialLINQPI, piValue.ToString());
});
setValue(lblSerialLINQTime, elapsed.ToString());

elapsed = Work(() =>
{
piValue = ComputePi.ParallelLinqPi(numSteps, numProcs);
setValue(lblParallelLINQPI, piValue.ToString());
});
setValue(lblParallelLINQTime, elapsed.ToString());
}, TaskCreationOptions.AttachedToParent);

// Attached (Continued) Task
var finish = piTasks.ContinueWith(resultTask =>
{
progressBar1.Visible = false;
btnCalculate.Enabled = true;

if (resultTask.IsFaulted)
{
MessageBox.Show(resultTask.Exception.ToString());
}
}, CancellationToken.None, TaskContinuationOptions.AttachedToParent, _uiScheduler);
}

// Child Task
private void setValue(Label l, String s)
{
Task.Factory.StartNew(() =>
{
l.Text = s;
}, CancellationToken.None, TaskCreationOptions.AttachedToParent, _uiScheduler);
}
Summary
	Parallel library of .NET Framework 4.0 brings a practical approach for programmers who develop software with C# and .NET. It’s a little bit complex, but parallelization of LINQ to objects with PLINQ is a huge plus.
References
· Parallel Programming in .NET Framework, MSDN Library
http://msdn.microsoft.com/en-us/library/dd460693(VS.100).aspx
· Task Parallel Library, MSDN Library,
http://msdn.microsoft.com/en-us/library/dd460717.aspx
· Task Parallelism, , MSDN Library,
http://msdn.microsoft.com/en-us/library/dd537609.aspx
· Data Parallelism, MSDN Library,
http://msdn.microsoft.com/en-us/library/dd537608.aspx
· Parallel LINQ (PLINQ), MSDN Library,
http://msdn.microsoft.com/en-us/library/dd460688.aspx
· [bookmark: _GoBack]Lambda Expressions, MSDN Library,
http://msdn.microsoft.com/en-us/library/dd460699.aspx
Citations
1. McCormick Grad Sets New Pi Record, North Western University, http://www.mccormick.northwestern.edu/news/articles/article_743.html
2. Numerical Approximation of pi, Wikipedia, http://en.wikipedia.org/wiki/Numerical_approximations_of_π
3. Language and Algorithms, Y – Cruncher, Number World,
http://www.numberworld.org/y-cruncher/algorithms.html

Appendix
For vs. Parallel For
	Iterations
	100000000
	200000000
	300000000
	400000000
	500000000

	For
	2,1468676
	4,2943751
	6,3688588
	8,4529540
	10,5321711

	Parallel.For
	1,0628901
	2,1405434
	3,2144211
	4,3752545
	5,5206022

	
	100000000
	200000000
	300000000
	400000000
	500000000

	Speed Up
	2,0198397
	2,0062079
	1,9813393
	1,9319914
	1,9077939

	Efficiency
	1,0099198
	1,0031040
	0,9906696
	0,9659957
	0,9538969

LINQ vs. PLINQ
	Procs
	100000000
	200000000
	300000000
	400000000
	500000000

	1
	5,4897684
	10,5839385
	16,1879512
	21,4278669
	27,0589289

	2
	3,0862212
	5,9359600
	9,0236640
	11,9426365
	15,0535736

	
	100000000
	200000000
	300000000
	400000000
	500000000

	Speed Up
	1,7787994
	1,7830205
	1,7939444
	1,7942325
	1,7975087

	Efficiency
	0,8893997
	0,8915103
	0,8969722
	0,8971163
	0,8987543

Notes About Appendix
· LINQ and PLINQ with parallelization degree (procs) 1 are nearly same. So I didn’t use LINQ data.
· My computer has only 2 cores so as the graphs and tables.
Time vs. Iteration
For	100000000	200000000	300000000	400000000	500000000	2.1468676000000002	4.2943750999999999	6.3688587999999999	8.4529540000000001	10.532171099999999	Parallel.For	100000000	200000000	300000000	400000000	500000000	1.0628900999999999	2.1405433999999999	3.2144211	4.3752544999999996	5.5206021999999999	Iterations
Time Elaspsed (secs)
Time vs. Process
100000000	For	Parallel.For	2.1468676000000002	1.0628900999999999	200000000	For	Parallel.For	4.2943750999999999	2.1405433999999999	300000000	For	Parallel.For	6.3688587999999999	3.2144211	400000000	For	Parallel.For	8.4529540000000001	4.3752544999999996	500000000	For	Parallel.For	10.532171099999999	5.5206021999999999	Process
Time Elapsed (secs)
Speed Up & Efficiency vs. Iteration
Speed Up	100000000	200000000	300000000	400000000	500000000	2.0198396805088317	2.0062079096364034	1.9813392837671455	1.9319913847297343	1.9077938816167554	Efficiency	100000000	200000000	300000000	400000000	500000000	1.0099198402544158	1.0031039548182017	0.99066964188357276	0.96599569236486715	0.95389694080837772	Iterations
Time vs. Iteration
1	100000000	200000000	300000000	400000000	500000000	5.4897684	10.5839385	16.187951200000001	21.427866900000001	27.058928900000002	2	100000000	200000000	300000000	400000000	500000000	3.08622116	5.9359599999999997	9.0236640000000001	11.942636500000001	15.0535736	Iteration
Time Elapsed (secs)
Time vs. Procs
100000000	5.4897684	3.08622116	200000000	10.5839385	5.9359599999999997	300000000	16.187951200000001	9.0236640000000001	400000000	21.427866900000001	11.942636500000001	500000000	27.058928900000002	15.0535736	Procs
Time Elapsed (secs)
Speed Up & Efficiency vs. Iteration
Speed Up	100000000	200000000	300000000	400000000	500000000	1.7787994169542924	1.7830205223754878	1.7939443667228745	1.7942325298103146	1.7975086593392018	Efficiency	100000000	200000000	300000000	400000000	500000000	0.88939970847714622	0.8915102611877439	0.89697218336143725	0.89711626490515728	0.89875432966960089	Iterations
5

