CEng 471 Parallel Computing Grid

Erdal ERDAL 200511019

Outline

- 1. History of Grid
- 2. What is Grid?
- 3. Development of Grid.
- 4. Why Grid?
- 5. Grid Application Fields.
- 6. Sample Application (LHC).
- 7. Grid Approaches.
- 8. Grid in World.
- 9. EGEE
- 10. Ulakbilim and Grid.
- 11. Türkiye Grid with Photos
- 12. Türkiye Grid Applications.
- 13. Travelling Salesman Problem (TSP)
- 14. Travelling Salesman Problem with Parallel Computing

1970s - 80s: Internet

□ Email, ftp, etc

- 1980s 90s: Remote-, Distributed-, Metacomputing
 - Beginning to think of ways to exploit distributed resources
 - □ US SC Centers Programs
 - Had to access remotely
 - Think of harnessing together
 - □ SC95: I-Way
 - □ First large scale experiments
 - □ Most failed, but I-Way a success!
- Post I-Way: The Grid
 - □ Explosion of activity, but still immature. Get prepared for future

- Grid is a service that the resources of the computer sharing via internet. Such as CPU and memory.
- The aim of the Grid technology is convert all the global computer network to a big calculation source.
- Grid aims to use the resources efficiently that are using inefficiently.

- Decrease the calculation time.
- Access the big data.
- Access the special equipment.
- Study with the other users.
- Resources can be sharing.
- Decrease the costs.

Grid Application Fields

- Fundamental Science (Mathematics, Physics, Chemistry)
- High Enegy Physics
- Medicine Science
- Genetic Science
- Brain Research
- Meteorology
- Electronic and Nano Technology
- Computer Science
 - • •

LHC (Large Hadron Collider)

- Grid is used in Cern.
- 10 PetaByte in a year.
 - (40 million
 event in a
 second)
- All the data must be processed and saved.

- 3 Approaches in Development Process
- Grid with Dedicated Clusters
 EEGE
- Grid with Super Computers
 - Deisa Grid Infrastructure
- Grid with Desktop
 - □ Home Projects

Grid in World

Europe

- EGEE (II) (Enabling Grids for E-science)
- SEE-Grid (South-Eastern European Grid),
- DEISA ("Distributed European Infrastructure for Supercomputer Applications")
- EUMEDGRID (Mediterranean Countries),
- EU-ChinaGrid, BalticGrid, NorduGrid, EELA (Latin America Countries), ...

America

- TeraGrid

- The biggest Grid Creation.
- 224 sites in 49 countries.
- 38.000 CPU.
- 15 PB storage.

Tübitak-ULAKBİM has some roles in the Europe Grid Projects.

- Network Activies
- Special Service Activities.

- Türkiye National Grid Infrastructure (TUGA)
- TUGA started to work under the ULAKBILIM in 2003.

TR-Grid Infrastructure

SİTE	іsiм	Çekirdek	Veri Alanı	TİPİ
TÜBİTAK ULAKBİM	TR-01-ULAKBIM	114	5 Tbyte	EGEE, SEE- GRID, EUMEDGRID
ODTÜ	TR-03-METU	300	20 Tbyte	EGEE
Erciyes Üniversitesi	TR-04-ERCIYES	64	1 Tbyte	EGEE
Boğaziçi Üniversitesi	TR-05-BOUN	64	1 Tbyte	EGEE
Pamukkale Üniversitesi	TR-07-PAMUKKALE	64	1 Tbyte	EGEE
Çukurova Üniversitesi	TR-08-CUKUROVA	64	1 Tbyte	EGEE
İstanbul Teknik Üniversitesi	TR-09-ITU	64	1 Tbyte	EGEE
TÜBİTAK ULAKBİM	TR-10-ULAKBIM	300	20 Tbyte	EGEE
TOPLAM		1034	50 Tbyte	

Türkiye Grid with Photos

First Cluster Project of Ulakbilim – Deniz -Levrek

Türkiye Grid with Photos

Grid System of Ulakbim

Türkiye Grid Applications

Modeling the human memory simulation project

- Modelling the human memory
- Simulating human interaction
- Examining the affect of memory dimesion.

- 105 users in ULAKBİLİM and ODTU.
- 76 users have TR-Grid Certificate to work on Grid.
- 40 articles.
- TR-Grid is being used in 23 different universities.

Sample Application of Parallel Computing

Travelling Salesman Problem

Given a collection of cities and the cost of travel between each pair of them, the **travelling salesman problem,** or **TSP** for short, is to find the cheapest way of visiting all of the cities and returning to your starting point.

The TSP is one of the most intensely studied problems in computational mathematics and yet no effective solution method is known for the general case.

TSP Sample

USA 13.509 is one of the larger TSP instances in TSPLIB. It contains 13,509 cities in the United States (all cities having a population of at least 500 at the time the instance was contributed to TSPLIB).

TSP Algorithms

- 1- Exact Algorithms
- 2- Heuristics
 - a) Constructive Heuristics
 - b) Iterative Improvement
 - c) Randomized Improvement
- 3- Greedy Algorithm
- 4- 2-Opt Algorithm
- 5- Greedy 2-Opt Algorithm
- 6- 3-Opt Algorithm
- 7- Genetic Algorithm
- 8- Simulated Annealing

TSP Algorithms

Comparison of TSP algorithms' length

TSP with Parallel Computing

In this application of TSP with parallel computing, all the cities are selected randomly. And the efficiency of paralel computing tested.

100 Cities

Number	Number of City	Number of CPU	Time
1	100	1	1.819
2	100	2	2.529
3	100	5	6.488
4	100	10	10.924

TSP with Parallel Computing

200 Cities

Number	Number of City	Number of CPU	Time
1	200	1	2.040
2	200	2	6.185
3	200	5	9.210
4	200	10	10.454

Number	Number of City	Number of CPU	Time
1	500	1	3.682
2	500	2	7.159
3	500	5	7.726
4	500	10	12.128

TSP with Parallel Computing

700 Cities

Number	Number of City	Number of CPU	Time
1	700	1	5.654
2	700	2	8.332
3	700	5	8.942
4	700	10	14.027

<u>Conclusion :</u>

In this application of TSP in parallel computing, we use random city selection algorithm so there is no any difficulty for processors.

As a result, it's an unefficient way to use parallel computing for the random city selection algorithm in TSP.

CEng 471 Parallel Computing Grid

Thanks

Erdal ERDAL 200511019