[image: image4.jpg]Yes. No

HONOR CODE

I hereby declare that, except where I have indicated, the work I am submitting in this report is my own work.
	STUDENT NAME
	SIGNATURE

	Funda KARABAK
	

TABLE OF CONTENTS

31.
BRANCH AND BOUND ALGORITHM

42.
THE PARALLELIZATION OF BRANCH AND BOUND ALGORITHM

73.
CONCLUSION

84.
REFERENCES

LIST OF FIGURES

3Figure-1 Branch and Bound Algorithm Scheme

5Figure-2 Parallelization of Branch and Bound Algorithm on MPI (master)

6Figure-3 Parallelization of Branch and Bound Algorithm on MPI (Slave)

1.
BRANCH AND BOUND ALGORITHM
The Branch and Bound algorithm is an general algorithm to find optimal solutions of hard optimization problems. It finds the optimum solution of a problem through a selective exploration tree. The nodes of tree show that different states of the solution states for solution search.

[image: image1]
Figure-1 Branch and Bound Algorithm Scheme [2]
Figure-1 shows that there is a selected problem. And selected problem is branched to sub problems.
First idea of the algorithm is to construct predictor of the likelihood of a node in the solution tree. This predictor will lead to an optimal solution.

And the algorithm works as:

1. Which node to branch next: The algorithm selects the live node with the best predictor value. Phase 1 shows this step in the Figure-1.
2. After selecting the branching node, the algorithm simply branches that node. This means that it generates all its children. The phase 2 shows this step in Figure-1.

3. Then, the predictor value of all newly constructed node is calculated. Here it is important that the branched node is known as dead node, and the children of this node is called as live nodes.

4. After creating all children, the best node is chosen based on the upper and lower bounds of the branched problem.

2.
THE PARALLELIZATION OF BRANCH AND BOUND ALGORITHM
Parallelization is used for Branch and Bound Algorithm, because;

· Many applications that appropriate B&B are highly computationally dense. Hence by using parallelization, algorithm can benefit from multiple computers to improve their performance.
· An implemantation following this norm can be divided into large numbers of subproblems. (tasks)
· Each of those tasks are highly asynchronous and self-contained.
· There is limited communication between these tasks.
[image: image2.jpg]busy[0] = 1; for 1 = 1, nProcs { busy[) = 0:)
idle = nProcs - 1;
//Sond initial subproblen to first idle slave
ausSp = sp.initSubProblen();
outputPackect. send (tirstidle
anSp, // initial subproblem
bestSol, // best Solution
sol)i // current solution

sdle-—;
IDLEQWORKING (busy tirstIdle); // mark this slave as working
// while there are vorking slaves
while (idle < (grospSize-1) {
recv(source, flag);
shile(riag) {
i (SOLVE_TAO) { 11 vecat
inputPacket .xecy (sourcs
bestsol,
so1); // current solution

the final solution

3
it (mmB_TAO) { 1/ receive a slave reque
snputPacket. recy (source,
high, // upper bound of the problen
nSlaves); // musber of required sl
if (nigh > bestSo){ // the problem mist be branched
total= ((nSlaves <= idle)7nSlaves:idle)
for 1= 1, total { idle--; IDLEZVORKING(busy,i); }
outputPacket. send(source,
total, // number of assigned slaves
bastSol, // best Solutien
L. ,total); // slaves identifiers

)
lse { // the problen must be bounded
outputPackted. send (source, DOIE);
1y
it (IDLETAG) { // receive the signal of an idle slave
inputPacket . rocy (source, IDLE);
idlers;
ORKING2IDLE (busy source); // mark this slave like idle
3
recv(source, flag);
3} // uhile Gdle < (groupSize-1))
7/ Send the ending message
for i = 1, groupSize { outputPacket.send(i, END); }

Figure-2 Parallelization of Branch and Bound Algorithm on MPI (master) [1]
Figure-2 shows the parallelization of the algorithm for Knapsack problem using MPI. It shows tasks for the Master. Here, generation of new subproblems and the evaluation of the results of each of them are completely separated of the individual processing of each subtask. The Master is responsible of the coordination between subtasks. At the beginning all th slaves are idle. The initial subproblem, the best solution and the best value of the objective function are sent to an idle slave. While there are idle slaves the Master receives information from them and decides the next step if the problem is solved. If it is so, the solution is received and stored. When the master receives a request of certain number of slaves, it is followed by the upper bound value. If the upper bound value is better than the actual value of the best solution, the answer to slave includes the number of slaves that can help to solve its problem. In other case the answer indicates that it is not necessary to work in this subtree. When the number of idle slaves is equal to the initial value, the search process finishes, then the master informs the slaves to end the work.

[image: image3.jpg]“hile) €
recyGsource, flag);
“hile (flag) {

i @ T 1/ xaceive <he tinishing nes
SapucPackes . recvOUSTER, BID); recurn;
B
ie emnio 17 the problen to be branched
inpuitacker zacu(asurce, /] source + slave ox master
Sucsp, /] the nivial subprobles.
BestSel, [/ the best solution value
2117 ehe current solution

sussel = sol;
bquese. insext(susSp); [/ dnsert in the locsl quese
i —
awiSp = baueue. resove(); // pop rom the local quese
Spragna ci1 code mumvises;
igh = ausSp. upper_bound(phm, awrSol); // upper bound
St high > bestsal) {
Lou = auxSp. lover_bound (pba,ausSo1); // loser bowsd
it Clow > bestsol) €
bestSol = lov:
01 = auxsol;
outputPacket send CUSTER, // send o the Master
SOLIE_TAG, // problen solved
bestSil, 7/ best. solution value
21 11 sstueion vector

3
it Cnign 1 20w €

high, /] upper bound
cSlaves); 1/ mun. of slaves Teq.
inpucPacker. zecv(USTER,
nfSlaves, // mun of slaves assig
bestsel, //updated bese soluvion
ank {1, atSlaves)):
it C atslaves 5= 0) ¢
auxSp.branch(pie baseue); /7 branch
£or 10, neSiavest /] send proviess to slaves
awsSp = bauese.remore():
Spragen cil cote mumvisss
outputPacket send(rasi, // send to the sla
PTG, 1/ eag
susip, /] subproblen
bestSan, I/ vest solution value
201); 1] the sotucion vectar

outpucPackes.send (USTER, TOLETAD; /idle slave
>

Tece(ouzce, flag)
¥ 317 e

DOVE the problen is bounded (cut)

Figure-3 Parallelization of Branch and Bound Algorithm on MPI (Slave) [1]
In figure-3, A slave works bounding the received problem. New subproblems are generated by calling the branch method. The slave asks for the help to Master. If no free slaves are provided, the slave continues working locally. Otherwise. It removes subproblems from its local queue and sends them directly to other slaves.

3.
CONCLUSION
Here, the Branch and bound algorithm for the Knapsack problem is investigated. For example the experiments are done on three different machines; Sunfire 6800 SMP, Origin 3000 and heterogeneous cluster of PCs. Results of the parallelization in Branch & Bound algorithm can be seen in Table 1, 2 and 3. According to these tables, it can be said that on different machines and on different numbers of processors computation time changes.
Table 1.

MPI Implemetation, Sunfire 6800 SMP[3]
	Procs
	Avg
	Min
	Max
	SpeedUp Avr

	2
	1560
	1554
	1569
	0,98

	3
	1185
	1177
	1204
	1,29

	4
	767
	625
	896
	1,99

	8
	412
	378
	462
	3,71

	16
	303
	284
	315
	5,04

	24
	250
	239
	258
	6,12

Sunfire 6800 SMP, the sequanltial average time is 1529 sec.

Table 2.

MPI Implemetation, Origin 3000[3]
	Procs
	Avg
	Min
	Max
	SpeedUp Avr

	2
	933
	932
	933
	0,93

	3
	743
	740
	745
	1,17

	4
	454
	399
	492
	1,91

	8
	251
	236
	266
	3,44

	16
	186
	174
	192
	4,66

	24
	152
	144
	167
	5,69

	32
	151
	144
	166
	5,74

Origin 3000, the sequanltial average time is 867 sec.

Table 3.
MPI Implemetation, Cluster of PCs[3]
	Procs
	Avg
	Min
	Max
	SpeedUp Avr

	2
	11390
	11343
	11434
	0,47

	3
	9344
	6175
	10044
	0,57

	4
	5162
	4538
	6195
	1,04

	8
	3772
	3478
	4642
	1,44

	10
	3518
	3299
	3699
	1,52

Cluster of PCs, the sequanltial average time is 5357 sec

4.
REFERENCES
1. http://ditwww.epfl.ch/SIC/SA/publications/SCR94/6-94-page15.html#3
2. http://www.mutah.edu.jo/userhomepages/CS252/branchandbound.html
3. Dorta I., Leon C., Rodriguez C.: A Comparison Between MPI and OpenMP Branch and Bound Skeletons. IPDPS '03 Proceedings of the 17th International Symposium on Parallel and Distributed Processing,0-7695-1926-1, 2003
4. Hönig U., Schiffmann W.: A Parallel Branch and Bound Algorithm for Computing Optimal Task Graph Schedules. Grid and Cooperative Computing, Second International Workshop, GCC, 2003

Main report submitted to

the Department of Computer Engineering of Çankaya University

in partial fulfilment of the requirement for

CENG 505 Parallel Computing I

Term Project

CENG 505 Parallel Computing I

TERM PROJECT

By

200972001		Funda KARABAK

Date: 21/01/2011

PAGE
1

[image: image5.png]

