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ABSTRACT
MOLECULAR~-DYNAMICS COMPUTER SIMULATION
OF COPPER CLUSTERS:

STRUCTURAL STABILITY, ENERGETICS, AND MELTING

Ozdogan, Cem
M.S., Department of Physics
Supervisor: Prof. Dr. Sakir Erkog

August 1996, 115 pages.

We have investigated cluster properties of copper using the Molecular—
Dynamics technique. In the simulation an emprical potential energy function
(PEF) proposed by Erko¢ has been used, which contains two-body atomic
interactions. The structural stability and energetics of Cu, (n = 13 — 135)
shell like structured clusters have been investigated at temperatures T' = 1 K
and T = 300 K. It has been found that the average interaction energy per
atom in the cluster decreases and reaches an asymptotic value as cluster
size increases. The melting behaviour of clusters n = 13 and n = 55 have
been investigated. It has been found that the melting temperature decreases
as cluster size increases, and for clusters with multishell structures melt-
ing starts from the outermost shell. The present results are qualitatively in

agreement with available literature values.
Keywords: Cluster, Moleculer-Dynamics Simulation, Verlet Algorithm, Em-
prical Many-Body Potential Energy Function, Maxwell Velocity Distribu-

tion.
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0z
_ BAKIR "CLUSTER"LARININ
MOLEKULER-DINAMIK BILGISAYAR SIMULASYONU:
KARARLI YAPILARI, ENERJILERI VE ERIMESI

Ozdogan, Cem
Yiiksek Lisans , Fizik Boliimii
Tez Yoneticisi: Prof. Dr. Sakir Erkog

Agustos 1996, 115 sayfa.

Molekiiler-Dinamik bilgisayar simiildsyonu metodu ile bakirin "cluster"-
larinin 6zellikleri incelendi. Simiiladsyonda Erkog tarafindan teklif edilen ikili
atomik etkilegmelerden olusan ampirik bir potansiyel enerji fonksiyonu kul-
lanildi. Cu,, (n = 13 — 135) kiiresel kabuk geklinde yapilmig "cluster"larin
yapilar1 ve enerjileri T' = 1 K ve T = 300 K sicakliklarinda incelendi.
"Cluster"larin biiyiikliiklerinin artmasiyla ortalama atom bagina diigen etki-
lesme enerjisinin asimtotik olarak diigtiigt gorilmiigtir. n = 13 ve n = 55
"cluster"larimin erimesi incelendi. "Cluster" biiyiikliigiiniin artmastyla erime
sicakhifinin digtigi ve ¢ok kabuklu yapilarda erimenin en digtaki kabuktan
bagladig goriilmiigtiir. Elde edilen sonuclar mevcut literatiir degerleri ile
uyum igindedir.

Anahtar Kelimeler: "Cluster", Molekiiler-Dinamik Simiildsyonu, Verlet Yon-
temi, Ampirik Cok-Cisim Potensiyel Enerji Fonksiyonu, Maxwell Hiz Dagili-

mi.
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CHAPTER 1

INTRODUCTION

Today, not only the catalytic chemists, but also scientists from many other
disciplines are involved with studies related to small clusters. This field con-
stitutes one of the important areas where experiments and theoretical work
go hand in hand and benefit considerably from each others’ results. Be-
cause the characterization of microclusters is believed to furnish additional
information about the fundamental mechanism of catalysis and many impor-
tant chemical reactions, properties of small clusters, have become a subject
of intense theoratical and experimental investigations [1]. This growing in-
terest is at present not only a technological one, but also has established
academic roots. Since small—cluster research is involved with microscopic
level, investigations, the results that it produces are extremely valuable in
the understanding of various very important processes. There are some com-
pelling reasons for the study of clusters [2];

i— Exploration of new basic physical phenomena. These are finite systems
with a congested spectrum of energy levels (for electronic states, phonons,
etc.). The level structure can be varied continuously by changing the cluster
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size. Accordingly, one can accomplish a ‘continuous transition’ from molec-
ular to solid—state systems,
ii— Microscopic approach to macroscopic phenomena, such as nucleation,
adsorption and desorption and catalysis,
iii— A variety of technological applications rests on cluster physics and chem-
istry. These include photography, aeorosols and smoke, sintering of small
particles in vacuum, plasma injection, as well as magnetism and supercon-
ductivity of metallic clusters,
jv— Astrophysical applications. The elucidation of the nature, the formation
mechanism and the properties of cosmic dust rests on cluster science.
Atoms in a microcluster have, in general, different surroundings with re-
spect to those in the bulk state. For example, the average number of nearest
neighbors of an atom in a cluster does not always correspond to its chemi-
cal valance, and it differs also from the number of nearest neighbors in the
corresponding crystal [3]. Many quantities (such as fhe temperature, surface
tension, surface area and even the volume) that are used in the description of
macroscopic systems become ill defined as the cluster size decreases. There-
fore, in the classical nucleation approach, for instance, one encounters many
difficulties in calculating properties of small clusters from thermodynamical
considerations [4, 5]. While the contribution coming from atoms located at
surfaces to many intensive properties is negligible in the description of a
macroscopic system, it plays an important part in the case of small clusters.
The most popular question asked in microcluster work is: how do the
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different material properties vary as function of the cluster size? Today,
it is well known that many characteristics associated with small clusters
vary non-monotonically going from a dimer to the bulk state. For exam-
ple, intriguing variations in the chemical reactivity and selectivity are the
two significant features over which the catalytic chemist would like to obtain
complete control. Microclusters display curious crystallographic anomalies
which cannot be found in the bulk. Pentagonal structures exist for small di-
mension phases. Energy and stability calculations show that these structures
are energetically favoured when they are compared to normal bulk structures.
In many instances, researches dealing with small clusters which looked like
an amorphous structures [6, 7]. Electronic excitations and ionization charac-
teristics of microclusters were also found to be quite different from respective
processes in the bulk [8, 9]. Undoubtedly, a thorough understanding an enor-
mous advantage in manipulating various technologically important reactions
in the directions desired. From an academic viewpoint, on the other hand,
the evolution of the structural, electronic and other properties as atoms form
progressively larger clusters leading to a macroscopic—size solid has long been
a challenging problem for solid state and theoretical physicists. An enormous
amount of experimental and theoretical work has been conducted to resolve
how these various properties of the solid state evolve. These intensified ef-
forts, during the last decade in particular, have resulted in an overwhelming
advancement in microcluster research. Today, clusters (neutral or ionic) can

be generated from practically any element. Characterization techniques have
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been developed to such ;a, state that for structural identifications in a variety
of cases atomic—level resolutions are possible. Very fundamental steps have
been taken toward the understanding of chemical reactivity. The availability
of supercomputers, on the hand, furnished tremendous help in understand-
ing microcluster properties via accurate ab initio calculations along with
detailed computer simulation methods. Their contribution to small-cluster
research is at present making an impact by providing atomistic level informa-
tion (unavailable by experimental means) to solve many problems releated
to stability and other structural properties. Theoretical methods along with
the atomistic computer simulation techniques are on their way to becoming
an integral part of the characterization procedures by providing sound mod-

els and contributing to the interpretation of many experimental observations

[10].

1.1 Definitions and classifications

Microclusters may be defined as aggregates of atoms (or molecules) held
under different conditions. In general, it is anticipated that properties of
microclusters are different from their bulk— or crystalline-state properties.
A precise description of microclusters may be achieved by using four different
classification schemes based on the composition, surroundings, size and the

level structure of the cluster.



1.1.1 Classification with respect to composition

In this scheme clusters may be categorised into two parts as homonuclear
and heteronuclear clusters. Homonuclear clusters are monatomic systems and
constitute the simplest category. They are used very frequently in small-
cluster research because of their importance in understanding the general
behaviour of microclusters. Heteronuclear, on the other hand, include alloys
and moleculer species. The types of atoms which constitute a cluster are
perhaps most important factors responsible for cluster characteristics. The
composition reflects the types of bondings (such as covalent, metallic, van
der Waals, etc.) and interactions operational among the atoms in the cluster.
While in the case of a homonuclear cluster only one type of interaction is
expected, for heteronuclear cases different types of bonding combinations

may exist.

1.1.2 Classification with respect to surroundings

Environmental effects on properties of microclusters may be quite sig-
nificant. In this respect clusters may be reviewed in two basic categories:
isolated clusters and trapped clusters. Isolated clusters are those with no (or
negligble) environmental influence acting upon them. In general, gas—phase
clusters under low—pressure conditions may be included in this group. In
this case, of course, forces operational among the clusters in the gas phase,
as well as interactions between the carrier—gas molecules and the clusters,
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should be negligble. Because of the need to understand many specific prop-
erties associated with microclusters and to sort out environmental effects,
isolated small—clusters reserach has gained tremendous momentum during
the last two decades. Trapped clusters, on the other hand, were the sub-
ject of many earlier effects (produced by interactions between the clusters
atoms and the neighbouring atoms of the support) which might have altered
various physical and chemical properties of the cluster with respect to its
isolated condition. Examples for trapped clusters include clusters in matri-
ces, in zeolites, in polymers, in solutions, or clusters deposited on substrate

surfaces.

1.1.3 Classification with respect to size

One of the most common classification schemes for microclusters is that
based on size. In general, very small clusters are defined as those containing
2 — 10 atoms and this group of clusters are usually called as microclusters;
small-size clusters are those with 10—10? atoms; medium size clusters contain
102 — 10°® atoms; large clusters have 10® — 10* atoms while clusters contain-
ing more than 10° atoms are classified very large clusters. Even though the
boundaries in this classification scheme are somewhat arbitrary and depend
very much on the type of atomic species involved, there are many differences
not only in properties of clusters in going from one group to the other, but
also in their preparation and characterization techniques as well. While prop-
erties of clusters in the very-large-size group resemble bulk properties, many

6



characteristics of very—small-size and small-size clusters deviate sharply from

their bulk values.

1.1.4 Classification with respect to level structures

In their description of microclusters, the thermodynamic and electronic
states of particles play an important role. In this classification scheme, in
general, clusters may be grouped in two categories, namely neutral and ionic
species. Most of the small—cluster research is involved with neutral particles
which are often assumed to be in their ground state. However, for characteri-
zation purposes, in many of the gas—phase experiments in particular, clusters
in their higher (rotational, vibrational and electronic) levels of excitations are
used. In this respect, melted clusters, for instance, may be classified as ther-
mally excited neutral particles. In gas—phase cluster experiments negatively
or positively charged particles are used primarily. Single or multiple ioniza-
tion of particles is utilized in association with various characterization and

seperation techniques in isolated small—cluster research.

1.2 Formation, characterization and investigation methods

1.2.1 Nature’s Way

At that point, the question of ‘What is the Nature’s way of producing
clusters?’ may be asked. The history of the expanding universe abounds with
examples of cluster formation, as expansion and cooling has taken matter in
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the initial cosmic fireball through various steps. During the first epoch,
lasting a fraction of a second, quarks clustered together in groups of three
to make nucleons. Much later, the nucleons joined together to form nuclei
with up to a hundred protons and one hundred and fifty neutrons. This took
place in the gas mantle, expanding outwards from the hot star, electrons
were subsequently aggregating around the nuclei. This was due to their own
cohesion but because of the electrical attraction from the positively charged
nuclei. Therefore the aggregation is limited to the number of electrons needed
to balance the number of protons in the nucleus.

These are special, though important, examples. In these cases the clus-
tering process terminates at a definite maximum size. There are of course
many other examples of clustering without such bounds, for instance into

molecules, dust particles, raindrops and even planets or stars [11].

1.2.2 Generation

Among the methods of producing small clusters, condensation in free jets
is the most widely used technique in generating gas—phase microclusters.
Generation of isolated small clusters in their ‘equilibrium’ morphology, free
of environmental effects and for a time period allowing proper separation and
identification, is a challenging problem even for permanent gases or van der
Waals systems. In general, the thermodynamic state of the gas prior to its
expansion and the nozzle dimensions determine the cluster characteristics.
For producing cluster beams for a metal (or semiconductor), the material

8



must be heated well above its melting point to obtain vapour pressure high
enough for a dynamic expansion. Metal clusters and the carrier gas then pass
through a nozzle into a fast low-reaction channel to form the cluster beam
as the mixture flows into a vacuum [12]. Another technique called ‘multiple
expansion cluster source’, which is used to produce microclusters of metals,
has been employed by Bowles et al [13]. These researchers were able to form
clusters of Cu, Ag, Au and Ni as an aersol supported in an inert gas which
is then expanded through a hole into a vacuum chamber where the cluster
beam is formed.

For generating ions, the clusters in the beam are ionised by electron im-
pact or by laser photons to produce positively charged particles, or an elec-
tron attachement method must be used for obtaining negatively charged
particles before they reach the detection chamber. Also, cluster ions may be
produced from ionic gaseous atoms (or molecules) which subsequently un-
dergo clustering reactions [14]. Another method to produce ionised particles
uses a liquid—metal ion source (LMIS). In this technique a liquid meniscus
of a metal is submitted to a very intense electric field that produces a beam
of charged particles [15].

In general, two problems are associated with cluster beam generation
techniques: the first is the difficulty of preparing a sample of specific cluster
size with adequate purity and abundance, and the second is the limited time
available for the observation of clusters in the generated beam. The latter
problem is related to the thermodynamic state of the particles in the beam. In

9



order to overcome the difficulty mentioned above and to obtain more specific
information about the stability and size of clusters in the beam studies, a
seperation step is introduced prior to the final detection step. In general,
seperation of clusters in the beam is a difficult problem. For seperation
of ionic clusters the most popular method is a combined technique which
involves ionization and mass seperation steps. It is, however, cumbersome to
use this method for producing neutral clusters because it should contain an

additional neutralization step for the ionic species.

Other methods, which are best suited for smaller size clusters, employ
beam deflection procedures. These methods are based on magnetic—,electric—
, crossjet— or photo—deflection techniques and do not involve ionization steps
[16, 17, 18]. Some of these techniques for generating a neutral, mass—selected

cluster beam have been examined by Arnold et al [19].

Another procedure to prepare microclusters for further investigations is
the matrix isolation technique. In this method microclusters are trapped in a
solid environment. To eliminate or rather minimize undesired environmental
effects due to the cluster-matrix interaction, in general matrices of rare—gas
solids are utilised in this technique. The process of the matrix isolation of
clusters involves a step of co—condensing a vapour with a rare gas onto a
cold surface. In the earlier matrix isolation techniques it has been assumed,
in general, that trapped clusters conserve their gas—phase properties and
that the interaction between the atoms in the clusters and the surrounding

10



matrix is negligble. Also, for the preparetion of the small- to intermediate—
size clusters, seeded beam or gas—aggregation techniques (based on a liquid-
helium-—cooled differential pumping), which provide a narrow size distribution

of the particles, are employed [20].

For the preperation of microclusters supported on substrates, the most
commonly used technique is vapour deposition. Many experimental tech-
niques have been developed for the preperation as well as for the characteri-
zation of substrate—deposited small clusters. Most of these experiments were
performed for model catalytic studies with UHV—evaporated metal clusters.
Results indicate that the crystallinity, cleanliness, stoichiometry and struc-
tural perfection of the support surface play a major role in determining the

structural properties of the cluster.

1.2.3 Characterization techniques

In general, for the characterization of microclusters, the above prepera-
tion procedures are coupled with one or more identification techniques and

constitute one single integrated characterization experiment.

Time-of-flight mass spectrometry (TOFMS) is an important technique
which is used quite frequently for the analysis of gas—phase—generated small
clusters during the time of their flight from the reaction chamber to the vac-
uum. Multiphoton ionization spectroscopy is another very useful technique
for the characterization of small clusters in supersonic jets. In this technique,
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first, one or more photons are tuned into resonance with an electronic tran-
sition, exciting a bound state of the neutral particle. Then, an additional
photon excites the particle to its ionization, producing a cation [17, 21].

Photodetachment and photoelectron spectroscopy have proved to be pow-
erful methods for the characterization of some small-cluster negative ions.
Basic principles of the photodetachment of negative ions have been well
documanted by Feigerle et al [22] and Stevens ef al [23]. In these mea-
surements the temperature of the cluster ion and, photofragmentation, are
among the experimental problems cited. Structural characterization methods
based on electron diffraction techniques are among the most effective experi-
mental tools available for research on clusters. For crystalline clusters it can
often determine in detail the atomic arrangement, cluster size and density.
For amorphous or liquid-like clusters, however, the diffraction information is
somewhat more limited. It has been shown that computer simulation studies
now can provide supplementary evidence of considerable value for filling in
details not resolved by the diffraction analysis [24].

Among the x-ray techniques (EXAFS) is the most widely used technique
for structural characterization of small clusters deposited on substrate sur-
faces, carbon films and for microparticles trapped in zeolites or matrices
[25, 26, 27]. In general, (EXAFS), which requires synchrotron radiation, pro-
vides an accurate

Another important technique to determine the structure and morphology
of supported clusters is the radial electron distribution method which based
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based on x-ray scattering measurements. (RED) provides the complete set
of interatomic distances present in the cluster as opposed to (EXAFS) which
probes mainly the first coordination sphere arond the absorbing atom. These
techniques have been compared in articles by Poppa [26] and Gallezto [27].
Many of the techniques developed for analysis of crystalline surfaces have
been adapted for the characterization of supported clusters. In supported
small—cluster research (such as in model studies on catalysis) (UBV)-based
integrated devices are being used for characteriation as well as for prepa-
ration purposes. One of the most important advantages of such integrated
techniques is to provide an excellent analytical environment, including high—
energy-resolution/highsensivity electron and infrared spectroscopy methods
and high—spatial-resolution electron microscopy (and diffra.cﬁon) to charac-
terise the system in great detail [26]. Furthermore, (UHV)-integrated tech-
niques can also furnish the highly desired control of the cleanliness of the
experimental environment that is necessary for the stoichiometry and mor-
phology of the substrate surfaces as well as for the structure, size and the
habit for the supported particles.

Many of the techniques for probing bulk surfaces are also used for the
study of suported small clusters. Recent techniques employed in characteri-
zation studies of supported clusters can broadly be classified in two groups.
(¢) High spatial resolution techniques that have limited analytical power;
these include micro—area electron diffraction, TEM,STEM, STED. (ii) Large—
area methods are based on various spectroscopic and diffraction techniques
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as well as thermal desorption and workfunction measurements (such as UPs,
XPS, LEED, SIMS, TPD, EXAFS, AES). Often two or more of these techniques
are combined to form powerful experimental approaches [26]. The most com-
monly used integrated experimental techniques in supported cluster research
include the TPD/AES dual-chamber system [28], the XPS/AES/WF/TPD sys-
tem [26], the UHV in situ TEM/TED stage [29, 30] and the UHV in situ STED

system [26, 31].

1.2.4 Ab initio methods

The ab initio methods loosely divide into the SCF/MCSCF/CI, or molec-
ular orbital (M0), and density functional approaches. The MO approaches
have proven to yield extremely accurate results for small molecules; in many
cases rivalling the accuracy possible in experiments. With the current meth-
ods and supercomputers, the size of the system that can be treated is large
compared to a decade ago. However, MO methods suffer from the rapid
growth in work with problem size. Hence the system size increases it is com-
mon to make more approximations either in the orbital basis set or in the
treatment of correlation. Both of these approximations naturaly reduce the
accuracy of the method. The density functional approaches were developed
based upon the assumption that the exchange and correlation energies can
be approximated by functions of the electron density. This approximation
greatly reduces the work relative to the MO methods. The local spin density
version of this approach appears to yield a reliable view of metals [32], and
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thus suggests that the approximation is quite good.

The applicability and associated level of succes of different ab initio meth-
ods in predicting properties of small to very small clusters of atoms have

shown enormous improvements during the last ten years[10].

1.2.5 Semi-emprical methods

Semi-emprical methods, in general, starts with the basic ideas used in
ab initio methods, but reduce the coplexity by many approximations. They
further reduce the work by approximating many of the required matrix ele-
ments with information deduced from experiment. The parameters used to
approximate the matrix elements can be fine tuned, based upon application
of the method to molecular systems for which experimental data exists. It is
probably not suprising that for a series of n related compounds, if the semi—
emprical methods are calibrated for n-1, they can do quite well for the nth;
in general, this appears to be the case for organic systems where many well
understood examples can be used to calibrate the methods. It is not clear
how to extend the semi—emprical methods to the study of the reactions of the
metal clusters. It appears that some caution must be used in applying semi—
emprical methods to interpret the chemistry of metal clusters. It is hoped
that as more experimental and accurate ab initio data become available to
calibrate these methods their reliability and applicability will increase.
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1.3 TImportant properties of small clusters

One of the most significant énd popular features of small-cluster investi-
gation is the analysis of various properties as a function of cluster size. Any
property associated with a small cluster is expected to converge to its parent
bulk value as the cluster size approaches macroscopic dimensions. In many
studies (experimental and theoretical) it has been clearly demostrated that
this convergence has a non—monotonic character and has different slopes for
different properties. Depending on the atomic species, involved deviations
from the linearity in cluster properties are most pronounced in the very-
small- and small-size cluster regions. In general, structural and electronic
properties as well as magnetism and energetics of clusters are very closely
interconnected and therefore it is difficult to analyse them independently
[33]. While the positions of atomic nuclei in a microcluster determine the
electronic states, the distribution of electrons, in turn, plays an important
role in energetics; accordingly, it affects the shape and the overall geometry

of the cluster along with its magnetic quality.

1.3.1 Structural and electronic properties

Unfortunately, detailed configurational analysis of a cluster on an atomic
scale is a very difficult task. For gas—phase clusters, in general, structural
information comes from electron diffraction studies. For trapped clusters,
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on the other hand, techniques such as EXAFS along with electron diffrac-
tion techniques are employed. While for trapped clusters structural property
measurement can be conducted at leisure, one faces difficulties in analysing
and sorting out associated environmental effects due to interaction between
the atoms in the cluster and the surrounding atoms. In the case of gas—phase
clusters, on the other hand, the environmental effect is minimal. However,
the timing of the measurement is often restricted, depending on the type
of the experimental technique and equipment utilised. In general, the time
lapse between the generation of a cluster in the gas phase and the mea-
surement step is quite short, therefore findings related to the stability of
small clusters and their equilibrium conditions are open to various criticisms
[21, 34]. The equilibrium condition is an important consideration in correlat-
ing the abundance ratio of a particular species in the beam with its stability.
Since different size clusters may dissociate (or associate) at different rates,
the abundance ratio in the beam at a non equilibrated state may not always
reflect the stability of gas—phase clusters at their equilibrated state.
Theoretical investigations indicate that small clusters exhibit different
geometrical structures with varying degrees of symetry corresponding to
metastable states which, in many cases, are nearly degenerate with the
ground-state configuration. Two important conclusions may be drawn from
theoretical investigations on the structure and stability of microcluster. (i)
In general, a number of different stable structures are likely be found ener-
getically in near degeneracy with the ground-state configuration. (i¢) The
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energetically lowest configuration does not have to be associated with a three—
dimensional high-symmetry structure.

The first conclusion mentioned above can be recognised as the main cause
of the fluxional nature of the small clusters that produces an additional diffi-
culty in the structural determination of isolated small clusters. In general, it
is anticipated that fluxionality of clusters is inversely proportional to its size.
In the structural characterization of microclusters, bond length measure-
ments play an important role. In the majority of the experimental studies, it
has been found that the nearest-neighbour distance contracts as the cluster
size decrease.

Thermodynamic properties such as the melting point and the vapour
pressure of microclusters also display considerable deviations as a function
of cluster size. For smaller—size clusters vapour pressure increases as the
melting point drops. As Poppa [26] outlined in his review, such important
thermodynamic property variation associated with cluster dimensions must
be taken into consideration in the context of sintering and dispersion studies
in the supported cluster research. In computer simulation studies it has
been found that in the smaller size regimes a temperature interval AT,
exists where solid-like and liquid-like structures can coexist [35, 36]. This
temperature interval was defined as AT, = T, — Ty where T,,, denotes the
upper bound of stability for the solid and T} is the lower bound of stability
for the liquid. Beck [35] found that AT is not a simple function of the cluster
size, but generally increases as the size increases. Other computer simulation
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investigations [37, 38, 39, 40] on the melting properties of rare gas clusters
indicate that, in general, melting behaviour exhibits strong dependence on

the size of the cluster.

19



CHAPTER 2

THE POTENTIAL ENERGY FUNCTION

2.1 Born—-Oppenheimer approximation

The Born—Oppenheimer approximation [41] provides an unambiguous def-
inition of a potential energy function for the nuclei which depends only upon
their positions and implicitly contains the energy of the ground state elec-
tronic wave functions that binds them together. If there are no external fields
acting on the system, then this potential depends on the relative positions
of the nuclei. If it is assumed that a function ®(ry,....,rN) exists to describe
the total potential energy of an isolated system of N atoms as a function
of their positions, then without any loss of generality the function & can be
expanded as [42],

b=po+ws+...+on+... (2.1)

where @9, @3, ..., @, Tepresents two—, three—,... and n-body potentials repec-

tively. In an explicit form

N N N
&= u(ry,r)+ Y ulrgryr) +...+ Y w(Ty,...,ra)+... (2.2)
<j i<j<k i< <N
where u(ry,rj), u(ry,rj,rK) and u(rj,...,rn) denote the two—body, three—

body and n-body interactions, respectively. In this so—called many-body
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expansion of @, it is usually believed that the series has a quick convergence,
therefore the higher moments may be neglected [43, 44]. Otherwise this
equation cannot be employed for systems containing more than only a few
atoms.

In the earlier calculations, in general, the higher terms including even
the three-body part were omitted, and the total potential energy, ® was
approximated only by the sum of two—body interactions. This approach,
which may be regarded as a first—order approximation, not only simplified the
statistical mechanical formalism used in calculating various thermodynamical
properties, but, more importantly, it enabled many earlier researchers to run
simulation calculations with relatively smaller and less powerful computers.
In most of the simulation calculations which are carried out considering this
first—order approximation, Lennard—Jones type functions were employed to
mimic two—body interactions. Despite the fact that those so—called Lennard-
Jones systems may represent only microclusters of rare gases where the role
of many-body forces are minimal, they provided a very useful understanding
about many properties of microclusters in a systematic way that could not
be acquired easily by other means. However, particularly in the case of
systems containing atoms other than those with close—shell structures, this
first-order approximation is inappropriate and produces results inconsistent
with many experiments due to neglect of many—body interactions. Therefore,
in add;ition to two-body interactions, three-body interactions also are being
considered in the calculation of potential energies. As anticipated, the type
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of potential energy function used in a modelling procedure dictates many
properties of small clusters, such as the stability and the energetics and, of

course, the distribution of the configurational energy levels, as well.

2.2 Erkoc PEF

The PEF that we used in our work contains only two—body interactions
terms to make the simulations easy for many—particle systems [45]. The con-
tribution of the truncated terms may be included by inserting linear combi-
nation parameters to the remaining terms. In this form one can insert one
linear parameter into the total PEF. However, one may insert parameters
into the total PEF by seperating the total two—body terms. This procedure
can be done by seperating the pair-interaction function into two parts, which
usuélly consists of two terms; a repulsive term and an attractive term.

The total interaction energy of a system was expressed as the linear com-

bination of two—body functions
® = Da1pa1 + Dasipos (2.3)
where 91, and g, are the two-body energies

oun =Y U, k=1,2. (24)

i<j
The general form of the two—body (U,-(jzk)) atomic interactions was defined in

terms of inter—atomic distances as

U}g?k) — Akr‘i;)‘ke“akr?j, k=1,2 (2.5)
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The two-body interaction function containes three parameters (A, A, o).
This form of the pair—potential function does not give a bound state for a
dimer. It requires two such functions one for the repulsive branch and one ‘for
the attractive branch of a complete pair-potential function. A combination

of two such functions form an exact pair-potential function
21 22
Uy =Ug" + U (2.6)

Therefore there are two sets of parameters for the two—body potential func-
tions, one for the repulsive part (4, A1, ;) in Uig?l) and one for the attrac-
tive part (A2, Az, ) in ng) [45]. These parameters were determined [46]
by fitting the exact pair-potential function, Eq. (2.6), to the experimentally
determined curve, which are taken from [47]. The profile of pair potential,
Eq. (2.6) is given in Figure 2.1.

Dy and D,y are the linear combination parameters , which contain, in
some sense, the contribution of many-body effects. As a whole the present
PEF containes eight parameters for a monatomic system. The combination
DglUgl) + ngUig-zz) may be considered as effective pair—potential, its profile
is also given in Fig. 2.1.

The linear parameters (Ds;, Ds2) were determined by considering the bulk
stability condition, at T = 0 K, (8®/9V = 0), and the cohesive energy

expression, Eq. (2.3). In Eq. (2.7)
0 = Daypy + Doy (2.7)

the prime denotes the first derivative with respect to volume, V', which is
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Figure 2.1: The potential profiles of a) pair potential, and b) effective pair
potential. Ey = —2.035 eV, Ej = —0.22 eV, rp =222 A, and r, = 2.74 A.
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the atomic volume in the crystal. The PEF satisfies the bulk cohesi.ve energy,
and the bulk stability condition exactly. The present PEF, although formed
from pair—intercations only, contains many-body effects.

The parameters of the present PEF are given in Table 2.1. This PEF was
applied for the stability and energetics of copper microclusters. It also gives
the elastic constants and bulk modulus of copper. Therefore the present PEF

satisfies some cluster and bulk properties of copper.

Table 2.1: Parameters of the PEF for copper [45]. In the determination of
the PEF paremeters energy was taken in eV and distance was taken in A.

Quantity Value
A 110.766008000
A1 2.090459460
a; 0.394142248
A, -46.164978300
A2 1.498530830
Qg 0.207225507
Dy 0.436092895
Dy 0.245082238
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CHAPTER 3

COMPUTER SIMULATION METHODS

3.1 Historical background

The invention of the electronic computer opened up a new possibility of
relating the macroscopic properties of matter to the microscopic informa-
tion on atoms and molecules. The main idea of computer simulation is as
follows. The configurations of a many—particle system are reproduced by
numerical computations, and thermodynamical properties are calculated by
averaging certain quantities over configurations thus obtained. In the molec-
ular dynamics method, the equations of motion of classical mechanics are
integrated numerically and the movement of each particle is followed. In
the Monte Carlo method, another typical simulation method, a stochastic

process is employed to change the configurations.

3.1.1 Early days

The study of properties of a liquid state has been a challenging problem
for computer simulations. Contrary to gas and solid states, there is no simple
model to describe well the nature of a liquid state. In a gas state, a nonin-
teracting ideal gas is a good model, and we can learn much about the nature
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of a solid from a perfect crystal simulations have been devoted to elucidating
the nature of a liquid.

In the 1950s, two basic computer simulation methods, the Monte Carlo
[49] and molecular dynamics [50] methods, were introduced. Already at this
early stage, many of the basic techniques of computer simulations (periodic
boundary conditions, the truncation of the interaction potential, and its cor-
rection) were employed.

Alder and Wainwright [50, 51] applied the molecular dynamics method
to the study of hard-sphere systems. This is generally considered as the
first molecular dynamics simulation. The discovery that a fluid-solid phase
change exists even in a hard—sphere system without an attractive force was a
surprise. The simulations in these early days were pioneering works in every
respect, they had a great impact by the discovery of unexpected results,
and confirmed the importance of the numerical approach for the many-body
problem.

A system with a continuous interacting potential was investigated by
Vineyard et al. [52] in a study of the radiation damage of a crystal and
by Rahman [53] in a study of a Lennard—Jones liquid. Vineyard’s work was
the first computer simulation application to the material sciences. Rahman's
work was also a milestone; he investigatedl many dynamical properties in
liquids.

Verlet [54] determined a phase diagram of a Lennard-Jones system. In
this study, he introduced the so—called Verlet algorithm (the most popular
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numerical integration method in the molecular dynamics simulations).

The simulation of liquid water by Rahman and Stillinger [55] marked the
start of the 1970s. This also indicated a change of the trend in simulation.
The target of study changed from a simple model system to a realistic one.
Rahman and Stillinger used an emprical potential for their study of liquid
water, but afterwards the interactions between molecules were often deter-
mined by the aid of molecular orbital calculations. A typical example is the
work by Clementi’s group on water—water interactions [56, 57).

Another typical numerical integration method, a predictor—corrector al-
gorithm (Nordsieck and Gear algorithm [58, 59]) is introduced in Rahman
and Stillinger’s work.

The treatment of the rotation of a rigid body becomes important in the
study of molecular systems. The equations of motion for the molecular ro-
tation expressed by using Euler angles have singular points. This is an un-
desirable feature for numerical integration. Singularity—free algorithms for
molecular rotation were introduced by Evans [60] and by Berendsen et al.
[61]. Evans rewrites the Euler equations for the molecular rotation in terms
of quarternions. In this form, the singularities disappear from the equations
of motion and it has also the merit that the calculation of the trigonometric
ftmctions is not necessary. In the method by Berendsen et al., the equations
of motion for an atomic system are solved under the imposition of constraints
to fix atomic arrangements in a molecule.

The calculation of the free energy evoked much interest in the 1970s. The
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most promising method is an umbrella sampling method [62] based on a
weighted average over two different s.tates. A remarkable extension in this
line is the method proposed by Frenkel and Ladd [63]. They make possible
the direct comparison of the free energy between different crystal structures
by gradually replacing the interatomic interactions by an Einstein lattice

vibration model.

3.1.2 New methods appeared in the 1980s

The 1980s was a decade of revolution for the molecular dynamics method.
Many new algorithms were presented. They may be categorized into the
following three groups: (i) simulations in ensembles different from the tradi-
tional microcanonical ensemble. This means simulations at constant temper-
ature and pressure. (ii) Nonequilibrium molecular dynamics method, (#i¢)
Ab initio molecular dynamics method known as the Car—Parrinello method.
These methods are related intrinsically and inspired the development of the
methods in different categories.

A common feature of new methods is that they modify the equations of
motion in classical mechanics. This modification allowed the adaptation of

the computer simulations to various situations [64].

3.2 Simulation in Cluster research

Computer simulation techniques based on atomic considerations provide
a useful approach to the study of small clusters. Despite the fact that,
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currently, many computer simulation calculations are at a qualitative level,
they nevertheless contribute considerably to our understanding of micro-
scopic structures and related processes. Simulation studies not only help
scientists to gain proper intuition but, in fact, they are becoming an im-
portant tool to aid in the interpretation of many experimental observations.
There are three common ‘atomic level’ computer simulation methods which
can be used in small cluster research: moleculer dynamics, Monte Carlo and

energy minimization.

All three of these simulation methods are based on some type of a po-
tential energy function which describes the total interaction energy among
the atoms as a function of their positions in the cluster. In general, finding
an appropriate potential energy function constitutes the most important and
difficult part of these simulation techniques, which are basically long iter-
ative procedures. Therefore, it is necessary to describe the total potential
energy of the system in terms of semi—emprical or model potential functions
with simple analytic forms. While for smaller size clusters more complex
functions (perhaps even functions based on first principles) can be utilised,
in the case of larger clusters the computational time becomes prohibitively
long, requiring the use of functions with the simplest possible forms to repre-
sent the interactions among the atoms in the cluster. Before discussing these
methods it is necessary to define ensembles briefly.
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3.3 Ensembles

For molecular dynamics (MD) and Monte Carlo (MC) techniques there are
a variety of statistical ensembles that may be employed. Simulations have

been reported using the following types:

— The microcanonical ensemble: In which the ensemble contains a con-
stant number of particles (N), constant volume (V) and constant inter-

nal energy (E); hence the alternative denotation as the (NVE) ensemble.

— The canonical ensemble: Where (N), (V) and temperature (T) are con-

stant hence the (NVT) ensemble.

— The isothermal-isobaric ensemble: Where pressure (P)is constant, in

addition to (N), (T); hence the (NPT) ensemble.

— The grand canonical ensemble: In which the number of particles is not
constant but may vary in order to achieve constant chemical potential

¢ and denoting the ensemble by {pvT) .

MD simulations are most easily carried out in the microcanonical ensemble,
while MC is naturally suited to the canonical ensemble. However, much mod-
ern MD work is undertaken using constant pressure (NPT) ensemble, while
MC simulations using the (uvT) ensemble have been extensively studied.
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3.3.1 Canonical-Ensemble Averages

Consider a system of N identical particles, each of mass m, contained in
the d-dimensional ‘volume’ V', at temperature T'. The restriction to identical
particles is made principally for notational conveinence and does not, of
course, imply any restriction on the MD method. Let particle ¢ have position
r; and velocity v;. It is designated a point in 2d N—dimensional phase space
by

xV = [V, vV] (3.1)
rN = [rla r2""7rN]a vN = [V13V27°'~st] (32)

For particles interacting through the potential U(r"), the canonical-

ensemble probability density in phase space is

p(xN) = Z(N,V, T) el P& (33)
1 N

H(x") = 5mY o} + U () (3.4)
i=1

Z(N,V,T) = f dx N l-AHEEM) (3.5)

B =1/kT (3.6)

where k is the Boltzman constant and the phase integral is defined by

f dxN = /V dr" / v (3.7)
/drNE/Vdrlfvdrz.../VdrN, /vasfdvlfdvz.../va
(3.8)
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The velocity integrals can be evaluated explicitly to yield
Z(N,V,T) = (2x/mB)*"PQ(N, V,T) (39)

Q(N,V,T) = /;, drV el-BUE) (3.10)
where Q(N, V,T) is called the configurational integral.

The ensemble average of a phase function f(x") is then

() = [ o) Fx) (3.11)

which reduces for functions of position to
(F) = UV, V1) [ el () (3.12)

The equilibrium thermodynamic functions of the system follow from the

Helmbholtz energy A(N,V,T),
e PANVI] = (m/R)™ (N)T'Z(N,V,T) = A ¥(N)'Q(N,V,T) (3.13)

A = (BR?/27m)/? (3.14)

where h is Planck’s constant. For particles interacting through the pairwise—

additive potential u(r;;),
i<j

where,

N
=2 ry = Irs — i (3.16)

< i=1 j=i+1

Z N-1

11l

one obtains the internal energy

E(N,V,T) = (8[8A1/88)ny = %deT HUE) (3.17)
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and the pressure

p=—(04/ OV)nr
pV/NET =1-28(W(x"))/dN (3.18)

W) = % Y rdu(ry)/dr; (3.19)

i<j

The function W is the virial and Eq. (3.18) is the so—called virial equation
of state .

The Monte Carlo method is the principal numerical method for the eval-

uation of expressions of the form Eq. (3.12), as typified by the averages

appearing in Eq. (3.17) and Eq. (3.18)[65].

3.4 Molecular Dynamics (MD)

In the molecular dynamics technique the classical equation of motion is
solved numerically for a collection of N atoms which constitute the cluster.
With the kowledge of the interatomic potentials, the forces acting on the par-
ticles may be calculated. The simulation then proceeds by solving Newton'’s
equations for the ensemble by allowing it to evolve through a succession of
time steps, each of At. In the limit of an infinitely small value of At, we can

write for the coordinates x; and velocities v; of the i** particle before and

after At:
z;(t + At) = z;(t) + v;(£) At (3.20)
vi(t + At) = v(t) + %At' (3.21)
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where f; is the force acting on the particle and m; its mass. In practice a finite
value of At is, of course used (typically in the range 10715 — 10714 sec, details
of determinig At is given in Appendix D) and more sophisticated uptading
algorithms are employed higher powers of At. Depending on the potential
energy function used and the type of the system to be simulated, a variety
of numerical algorithms is available for this purpose [65, 66, 67, 68, 69] (
[67] is advised especially for non—equlibrium molecular dynamics algorithms
(NEMD)). The method generates a time-order series of atomic coordinates
representing the motion of every atom in the system. Kinetic energies are
incorporated with the calculation scheme, therefore temperature effects are
intrinsically included in the result. In principle, molecular dynamics calcula-
tions with a sufficient number of iterations can simulate any time-dependent
(non—equilibrium), as well as equilibrium, quagtity. Using velocities of par-
ticles evaluated in every step, one can obtain the velocity autocorrelation
function from which the frequency distribution spectrum for the microclus-

ter can be calculated.

3.4.1 Molecular Dynamics Averages

While the calculation of the properties of matter by ensemble methods has
attained pre—eminence in statistical mechanics, nevertheless the method of
time averages along a dynamical trajectory is no less fundemental a technique
to determine such properties. It is defined that the molecular dynamics

35



average of a phase function f(x") as

7 = lim 7o), HORR S 7 G B X

t—00
Here x"(t) denotes the phase space trajectory determined by the classical
equations of motion

dl‘i _ dVi _ 198
- =Ve - = "E?GEU(rN ) (3.23)

together with certain boundary conditions and initial data x¥(0) = x¥.
While dynamical methods can evidently have application beyond the field
of equilibrium averages, for the most part we shall be concerned with the
latter. The relationship between ensemble averages and time averages then
introduces the field of ergodic theory.

The quasi—ergodic hypothesis asserts the equivalance of the MD time av-
erage Eq. (3.22) with an ensemble average in an ensemble characterized by
the constants of the dynamical motion, the volume V, the number of parti-
cles N, and at least for most numerical applications, the energy H (xV). The
existence of other constants of motion depends on the boundary conditions;

for periodic boundary conditions, linear momentum
N
MWVY)=m) v (3.24)
=1

is also conserved. We refer to an ensemble characterized by specified values
of N, V, energy FE, and linear momentum M as the ‘molecular dynamics

ensemble’ and write averages therin as [65]

(SO wven = [ @ pwven() F) (3.25)
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pxven(x¥) = Z(N,V, E,M) ' A(x"; E,M) (3.26)
AN, E,M) = §[E — H(xM)]6[M — M(v")] (3.27)
Z(N,V.E.M) = JENGaAY (3.28)

where the § function for a d—vector argument y is defined by

d
8(y) =11 6(u) (3.29)

i=1
3.4.2 Approach to Equilibrium

As noted above, the molecular dynamics ensemble is characterized by
fixed values of N, V, E and M. All states x" consistent with these values
are equiprobable. According to the quasi—ergodic hypothesis, the trajectory
x/(t) starting from x" should, except possibly for a set of inital phases
of zero measure, spend equal amounts of time in regions of allowed phase
space having equal measure. Nevertheless there exist exceptional states xV
for which the short-time behaviour of x¥(t) is unusual in that the phase
function f(x¥) corresponding to a macroscopic observable departs from its
ensemble average significantly. In Fig. 3.1 it is illustrated such a situation
by a sketch of Af(t) = flx"(t)] — (F(x")) yvEs- The initially large values of
Af tend to decrease with time until the fluctuations become of order 1/N,
with only rare fluctuations of larger magnitude.

An example of such an initial state is provided by the situation in which
the particles in one-half of V have much higher energy than those in the

other half, at least if N is of macroscopic magnitude. Other such exceptional
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states will not necessarily appear so unusual. Nevertheless we speak of the
system as non—equilibrium initially, as approaching equlibrium when Af is
large and decreasing, and as in equilibrium at subsequent times, when A f
is of order 1/N. While large fluctuations should reappear after the Poincaré
recurrence time, this time is enormous for fluid systems, at least if N is not

too small [65].

Exceptional xM{0) Poincaré recurrence
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Figure 3.1: Time evolution of a dynamical system.

3.4.3 Time-Saving Techniques

The careful selection of an interaction algorithm is not the only means
of conserving computer resources in molecular dynamics. In this section
two devices will be discussed so that a significant amount of computer time
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during the generation of a phase space trajectory can be saved: equilibration

on subsystems and bookkeeping.

At the beginning of a molecular dynamics calculation, one must normally
assign initial conditions, that is, the values of the position and velocity for
each particle in the system. There are a number of ways of doing this:
the molecules may be arranged on a lattice, a configuration from another
molecular dynamics calculation may be modified to satisfy the new density
condition, or a random configuration may be generated using a Monte Carlo
technique. The velocities may be assigned from a Maxwell-Boltzmann distri-
bution at the desired temperature by a rejection technique (see Appendix B),
or they may even all be assigned an initial value of zero. In any case, the ini-
tial state selected will in general not be an ‘equilibrium state’ consistent with
the desired temperature and density. As a result, the temperature (which
is found from the sum of squares of the molecular velocities) will be seen
to drift away from its initial value as the integration proceeds. When this
happens, the integration must be halted and the velocities multiplied by a
scale factor to restore the temperature to its desired value (see Appendix C).
This procedure is then re;peated until equilibrium is achieved, that is, until

the temperature drift is replaced by fluctuations about the desired value.

In some molecular dynamics work, the process of equilibration has ac-
counted for a substantial fraction of the total computer time devoted to the
calculation. If the intermolecular potential has a sufficiently short range,
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however, it is possible to use only a fraction of the molecular dynamics sys-
tem for equilibration. One can set aside a subsystem containing, say, an
n of the total number of molecules, se}ect initial conditions, and allow the
subsystem to come to equilibrium. After equilibrium has been reached, the
subsystem is replicated n—fold in space to generate the full system. All of
the velo;:ities are reassigned from a Maxwell-Boltzmann distribution, and
equilibration is resumed. After the replication, equilibrium for the full sys-
tem is usually established quickly. Since the integration for the subsystem
is fast compared to the full system, this equilibration procedure results in a
significant saving of computer time.

It can be identified at least two problems arising in the initialization and
equilibration procedures which have been mentioned above. One problem
concerns the relaxation time of the system. The basic time step h deter-
mines the real time of the simulation. If the intrinsic relaxation time is long,
many steps are required in order for the system to reach equlibrium. For
some systems the number of time steps may be prohibitively large for the
present speed of computers. However, it is possible in some circumstances to
circumvent the difficulty by an appropriate scaling of the variables. Examples
of where this is possible are systems near second-order transitions.

In connection with the relaxation time one has to face the possibility
that the system is trapped in a metastable state. Long-lived metastable
states may not show an appreciable drift in the kinetic or potential energy.
Especially for systems investigated near two—phase coexistence, say between
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liquid and gas, this danger arises.

The second problem is that the system might have been set up in an irrel-
evant part of the phase space. This problem can be handled by performing .
simulations with initial conditions and different lengths.

Bookkeeping procedures take advantage of the finite range of the inter-
molecular potential. At any given time during a molecular dynamics calcula-
tion, most pairs of molecules are seperated by a distance much greater than
the effective range of intermolecular potential r,. It makes little sense then
to calculate the distance between each pair of molecules at each time step
of the integration. In the ‘standard’ method of bookkeeping, one imagines a
sphere of radius slightly larger than r; centered at each molecule. A list is
then kept in computer storage of all the other molecules that are within each
molecule’s sphere. Of course, if molecule j is listed in molecule i’s sphere, it
should not be necesarry to list molecule i explicitly in molecule j’s sphere.
Then when the total force and torque exerted on molecule i are to be cal-
culated, only these neighbors needed be considered. The list of neighbors
must, of course, be updated periodically. In sufficiently dense fluids this is
done approximately every ten integration steps. The difference between the
radius of the bookkeeping sphere and r; must be larger than the maximum
distance a molecule might reasonably travel in these ten steps, at the given
temperature of the system. This method consequently requires that after
each ten steps the list of particles within the bookkeeping sphere of each par-
ticle must be updated, a procedure requiring the calculation of the distance
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between every distinct pair of molecules, of which there are N(N — 1)/2.
For an N-molecule system, the computer time required for this updating is
roughly proportional to N2.

In an alternative bookkeeping scheme, the molecular dynamics box is
divided into a number of small cells. At the beginning of each time step, the
particular molecules in each cell are listed. The cells are then scanned, and
relative distances are calculated only for pairs of molecules in neighboring
cells. In this method the time required at each step is always proportional
to N. Thus, as the number of particles in the system increases, this method
should become faster than the previous bookkeeping method.

One of the important parameters in this form of bookkeeping is the size
v (volume) of the cell. There is a trade off between the cycle time and
accuracy. This procedure only includes interactions between the particles in
nearest—neighbor cells. If ¥/3 is less than or equal to the interaction range,
then important interactions will be missed. On the other hand, if v is large
so that on the average a large fraction of the N particles occupy each cell,
the procedure becomes an inefficient as if no bookkeeping were used.

The use of bookkeeping procedures will in general yield dramatic reduc-
tion in the consumption of computer time in molecular dynamics and can

therefore greatly increase the scope of such calculations [68, 69).

3.5 Monte Carlo (McC)

MC is a technique of computational statistical mechanics ideally suited for
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calculating ensemble averages in the canonical (NVT) ensemble. The simula-
tion proceeds via the generation of succesive configurations of the ensemble by
a series of random moves each of which normally involves the displacements
of only one particle. Once a sufficient number (normally several thousand)
configurations have been generated, ensemble averages are straightforwardly
calculated.

Possibly the most crucial technical feature of an MC simulation concerns
the ‘acceptance’ procedure, i.e. the criteria used to decide whether a config-
uration generated after a move should be included in the final set of config-
urations which are stored and used in calculating ensemble averages. Monte
Carlo techniques employed in small—cluster simulations are, in general, based
on the Metropolis procedure [49, 70, 71, 72}, the method in effect weights the
probability of acceptance of a new configuration by its Boltzmann factor.
Starting from an inital configuration, atoms in the cluster are randomly dis-
placed according to the Maxwell-Boltzmann distribution. At thermal equi-
librium, the probability that an assembly of atoms will achieve the energy
APF required to transform from one particular equilibrium configuration to
another is given by the Boltzmann factor exp(—AE/kT). A new ‘trial’ posi-
tion is sampled at random for the atom, within a small spherical region about
its current position, and the change in energy associated with movement to
this trial position is computed. A random number is then selected from the
interval (0, 1) and compared with the Boltzmann factor for the trail move. If
the random number is smaller than the Boltzmann factor the move is made;
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otherwise the atom is retained at its original position. After generation of a
sufficient number of Monte Carlo steps (ensuring that the phase space is sam-
pled ergodically) the desired quantities are calculated as ensemble averages
from position—dependent quantities estimated in every step. By this method
any equilibrium quantity can be calculated as a function of temperature
which is introduced via the Maxwell-Boltzmann factor. In grand canonical
(uvT) MC a move may involve the inclusion of an additional particle in the
ensemble.

MC has similar computational requirements to MD and like MD, MC calcu-
lations normally have an equilibration period followed by a production run.
But unlike MD, the successive configurations in the simulation have no re-
lationship on time. MC is therefore inherently more restricted than MD as
time dependent phenomena cannot be directly investigated. However, the
method is the simplest and most direct way of understanding simulations in
the canonical and grand—canonical ensembles. Moreover, it continues to have

considerable vitality with important fundemental developments.

3.6 Energy minimization (EM)

EM methods are restricted to the prediction of static structures and of
these properties which can be described within an harmonic (or quasi-harmonic)
dynamical approximation; there is no explicit inclusion of atomic motions.
The static method is based on a simple minimization technique to find the
configuration of a cluster corresponding to the nearest energy minimum. It
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is a temperature-independent approach and can be regarded as the T'=0 K
case. Despite these limitations, the methods have proved to be poverful and
remarkably flexible in their range of applications. The basis of the method is;
the energy E(z) is calculated, using knowledge of interatomic potentials, as
a function of all the structural variables, z, (e.g. atomic coordinates or bond
lengths and angles); an initial configuration is specified and the variables
are adjusted, using an iterative computational method, until the minimum
energy configuration is obtained, i.e. the system runs ‘down-hill’ as shown
diagramatically in Figure 3.2. The method may be extended if vibrational
properties of the energy minimum are calculated using the harmonic approx-
imation; thus for a molecule normal coordinate analysis may be used, while
for a solid, standard lattice dynamical methods are employed. This allows
entropies in addition to enthalpies to be calculated and hence ‘free-energy’
minimization may be performed.

The most important technical features of energy minimization methods
concern first the type of summation procedures used in evaluating the total
interaction energy; this problem is, however, common to all atomic simula-
tions. Secondly the choice of the computational minimization method.

The simplest methods employ the energy function alone and search over
configuration space until the minimum is located. While such methods may
be suitable for very simple problems with few variables, they are unaccept-
ably inefficient in almost all contemporary studies. Much greater efficiency is
obtained using gradient techniques in which the first derivatives 8E/9:x; with
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Figure 3.2: Energy (E) minimization with respect to some structural variable
z. The system runs down from the starting point S to the minimum M.

respect to all the structural variables z; are calculated. These then guide the

direction of minimization.

EM techniques have the advantage of simplicity and versality which has
led to them being widely applied to e.g. crystal structure modelling (of both
organic and inorganic materials), to studies of the confirmation of molecules,
including biological macromolecules (note that in these fields, EM is often
referred to be the term ‘molecular mechanics’) and to modelling of defects
in solids. Compared with many other computer simulation techniques EM
requires little CPU time, and this factor allows the use of more complex and
sophisticated potentials.

Nevertheless EM methods are severely limited; they inherently omit any
representation of atomic motions and time dependent phenomena. Moreover,
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even given the usefulness of the static approximation, there is a major addi-
tional difficulty in that EM techniques can only be guaranteed to locate the
nearest local minimum to the starting point of the calculation as shown dia-
gramatically in Figure 3.3. The local minimum problem may be very severe
as in studies of protein conformations, although less difficulties are encoun-
tered in solid state applications. There is no general solution to the problem.
The use of several starting points in a calculation is obviously advisable.

In addition, energy minimized configurations may be input into dynamical
simulations (using the techniques summarized below) which may allow en-
ergy barriers to be surmounted. There remains, however, no guarantee that
the lowest energy or global minimum has been located. Depending upon the
initial configuration chosen, however, this method can provide only one of
the many configurational energy levels associated with the cluster. Even for
clusters in smaller size regimes, finding the cluster configuration correspond-
ing to the lowest energy level (the ground state) may turn out to be a quite
difficult job, particularly if the gross structure of the symmetry group of the
ground state cannot be guessed initially. In order to increase the probability
of finding the global minimum, a rather large number of initial guesses must
be made and, even then, minima located in narrow catchment regions may
easily be missed.

On the other hand, if one uses physical intuition, usually as a set of
growth rules deduced from the behaviour of macroscopic systems, to generate
configurations which are likely to lead to the global minimum, the general
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Figure 3.3: Illustration of the local minimum problem with the system run-
ning from S to the local minimum L, despite the presence of lower global
minimum G.

tendency is to miss low—symmetry solutions [73].

EM remains, however, a widely used technique, which is of considerable
value provided its limitations are borne in mind. It is undoubtedly most
appropriate as a ‘refinement technique’ for improving structural models based
on approximate knowledge from experiment and from other sources. By the
same way force minimization method is also commonly used in most of the

static models.
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CHAPTER 4

CALCULATIONS & RESULTS

4.1 Shell-like Copper Clusters

In the first part of this work, we studied the structural stability and
energetics of isolated small Copper clusters, Cu,, (n = 13,19, 43,55, 79, 87)
and medium size cluster (n = 135) at temperatures T'=1 K and T' = 300 K
by using Molecular—-Dynamics technique. Clusters are generated from fcc
crystal structure such that: an atom was taken at the center and first nearest—
neighbour distance (d,,) as the radius of the first shell, then the second
nearest—neighbour distance as the radius of the second shell, and so on up
to 7 shells. The number of atoms contained with respect to shells is given in

Table 4.1.

We relaxed these clusters by using Erkog potential which is explained in
the second chapter. The total interaction energy has been calculated for
each cluster. The graphs of Potential Energy versus Molecular-Dynamics
steps (MD ) for each cluster at T'=1 K and T = 300 K are given in Figs.
4.1-4.7, respecti\{ely. It is seen that the clusters with n = 19,79, and 87 at
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Table 4.1: Total number of atoms in the cluster with respect to shell size.

Shell Number
Number of
(Ns) Atoms
1 13
2 19
3 43
4 55
5 79
6 87
7 135

T=1K,and n =19,79, and 87 at T = 300 K reach equilbrium quickly;
on the other hand, the clusters with n = 13,43,55, and 135 at T' = 1 K,
and n = 13,43, 55, and 135 at T' = 300 K reach equilibrium relatively longer
time because of the presence of a lower minima.

The radial distribution funcitions for each cluster were calculated by tak-
ing the atoms around the centeral atom into account. The graphs of Radial
Distribution Function vs Distance for each cluster at Ideal, ' = 1 K and
T = 300 K are given in Figs. 4.8-4.14. Initial radii 7,,(= d,..) of fcc spherical
clusters and calculated average radii r;,¢ = 1—7, are given in Tables 4.2-4.3
at T =1 K and T = 300 K, respectively. In the n = 135 cluster the atoms in
the 5th and 6th shells mixed after relaxation, in this situation 75 looks larger
than rg; this artifact is due to keeping the initial labels of atoms till the end
of the calculation. The present results shows that there is expansion of shells
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after MD relaxation except n = 135 cluster. For microclusters, there is a
relation such as; 7y < 7 < d,, where 7 is the dimer separation, d,, is the
nearest—neighbour distace in the crystal and r is the cluster value. We have
found that the order changes for shell-like clusters. The anology is such that;
rg < d,, < 7. In addition to this expansion, there exist some distortions in
the cluster structures. Cluster structures were given in Figs. 4.15-4.21 for
Ideal, at T'=1 K and at T = 300 K cases, respectively, from top to bottom.

The average interaction energy per atom, ®/n, for each cluster is calcu-
lated. The calculated values for Ideal, T =1 K and T = 300 K are given in
Table 4.4. By ideal case, it is meant the potential energy configuration with
the initial, crystalline like coordinates. By T'=1 K and T = 300 K cases it
is meant the final step potential energy configuration of the system approach-
ing the equilibrium after MD relaxation. The variaton of average interaction
energy per atom, E, = ®/n, as a function of the cluster size is plotted in Fig.
4.22. It has been found that the average interaction energy per atom in the
cluster decreases and reaches an asymptotic value as cluster size increases.
There is an exponential-like decay for Cu,, (n =13,19,43,55,79,135). The
behaviour is different for n = 87 cluster: slope gets positive value; the number
(n = 87) corresponding this cluster may be considered as a "magic number".

The decay is fast for n = 13,19,43 and small for n = 55,79,135 clusters.
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Table 4.2: Initial radius d,, of fcc spherical clusters and calculated average

radii (in A) T, T3, T3, T4, M5, T¢ and 77 at T =1 K.

n [ 1! 2 3 T4 5 Tg 7
13 | 2.5600 | 2.6135

19 | 3.6204 | 2.6589 | 3.8001

43 | 4.4341 | 2.5849 | 3.8008 | 4.5026

55 | 5.1200 | 2.4694 | 4.2979 | 4.3498 | 5.1225

79 | 5.7243 | 2.5837 | 3.6451 | 4.5068 | 5.2455 | 5.8792

87 | 6.2707 | 2.5613 | 3.6692 | 4.4518 | 5.2401 | 5.9002 | 6.2945

135 | 6.7731 | 2.4331 | 4.1508 | 4.2593 | 4.9520 | 6.2784 | 6.1026 | 6.6464

Table 4.3: Initial radius d,, of fcc spherical clusters and calculated average
radii (in A) 74, ra, 73, T4, 75, 76 and r; at T' = 300 K.

71

T9

73

T4

75

Ts

7

13

2.5600

2.6344

19

3.6204

2.6094

3.7727

43

4.4341

2.6259

3.8886

4.5424

59

5.1200

2.5103

4.2156

4.4211

5.1836

79

5.7243

2.5591

3.6366

4.4744

5.2061

5.8446

87

6.2707

2.5601

3.6712

4.4528

5.2889

5.9095

6.3262

135

6.7731

2.4463

4.2451

4.2469

4.9518

6.3987

6.0769

6.6166
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Figure 4.8: Radial Distribution Function vs Distance (in A) for n = 13
cluster at Ideal, T =1 K and T'= 300 K.
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Figure 4.9: Radial Distribution Function vs Distance (in A) forn = 19
cluster at Ideal, T =1 K and T' = 300 K.
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Figure 4.10: Radial Distribution Function vs Distance (in A) for n = 43
cluster at Ideal, T'=1 K and T = 300 K.
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Figure 4.11: Radial Distribution Function vs Distance (in A) for n = 55
cluster at Ideal, T'=1 K and T = 300 K.
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Figure 4.13: Radial Distribution Function vs Distance (in A) forn = 87
cluster at Ideal, T =1 K and T = 300 K.
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Figure 4.14: Radial Distribution Function vs Distance (in A) for n = 135
cluster at Ideal, T =1 K and T = 300 K.
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Figure 4.15: Structures for n = 13 cluster at Ideal, T =1 K and T' = 300 K.
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Figure 4.16: Structures for n = 19 cluster at Ideal, T'=1 K and T' = 300 K.
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Figure 4.17: Structures for n = 43 cluster at Ideal, T'=1 K and T = 300 K.
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Figure 4.18: Structures for n = 55 cluster at Ideal, T’=1 K and T' = 300 K.
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Figure 4.19: Structures for 7n = 79 cluster at Ideal, T =1 K and T' = 300 K.
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Figure 4.20: Structures for n = 87 cluster at Ideal, T'=1 K and T = 300 K.
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Figure 4.21: Structures for n = 135 cluster at Ideal, T =1 K and T = 300 K.
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Table 4.4: The average interaction energy per atom (in eV), ®/n, in Cu,
clusters for Ideal and at T=1 K , T =300 K.

d/n ®/n d/n
n Ideal atT=1K atT=300K
13 -0.6751 -0.7551 -0.7318
19 -0.7716 -0.7951 -0.7847
43 -0.9621 -0.9949 -0.9785
55 -1.0396 -1.0983 -1.0651
79 -1.1226 -1.1361 -1.1257
87 -1.1174 -1.1295 -1.1203
135 -1.2164 -1.2514 -1.2353
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4.2 Melting of Copper Clusters

We have melted n = 13,55 clusters as the second part of our work. We
chose n = 13 cluster because of its high symmetry, and n = 55 cluster to
see the melting behaviour of a multi—shell structure. Two models are used
for melting of n = 13 cluster; first model can be defined as the sequential
model while second model as initial configuration model. We started for
both model with relaxation at T = 1 K. Then using the equilibrium fi-
nal step coordinates, the system is relaxed by increasing the temperature
to T' = 300 K. After reaching equilibrium at T = 300 X, we increased
the temperature to ' = 600 K and relaxed the system with final step co-
ordinates of T = 300 K relaxation. We increased the temperature up to
T = 9900 K by incrementation of 300 K and relaxed n = 13 cluster in a
sequantially manner for modell. However, for model2 we again increased
the temperature up to I’ = 9900 K by incrementation of 300 K but relaxed
the system by using only final step coordinates of ' = 1 K relaxation for all
temperatures. The variaton of average interaction energy, E; (in eV), as a
function of the temperature (K) for n = 13 cluster is plotted for both modell
and model2 in Figs. 4.23-4.24, respectively. The present results show that
for model2 the behaviour of the graph is almost straight line and the slope is
constant in average manner. There exist distortions and disintegrations but
not completely, it is not accurate and consistent with so high temperature.
For modell, there exists a complete disintegration, and it starts between
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T = 4200 — 4500 K. We have decided with the presence of these results
that the melting as a continuous process is described by modell. n = 55
cluster is melted by using modell up to T = 6900 K. The disintegration
starts at T' = 6600 — 6900 K. The variaton of average interaction energy,
E, (in eV), as a function of the temperature (K) for n = 55 cluster is plot-
ted for modell in Fig. 4.25. The distortions in cluster structures between
Ideal and starting temperature of disintegration for modell is given in Figs.
4.26-4.27 and Figs. 4.28-4.29 for n = 13 and n = 55, respectively. In the
Figs. 4.26-4.27 the dark color atom represents the central atom, and in the
Figs. 4.28-4.29 different colored atoms represents different shells. We took
the fluctations of standard deviations of interatomic distances between the
central atom and atoms surrounding it as the defination of melting[76]. The
graphs of Standard Deviation (o) versus Temperature (in K) are given in
Figs. 4.30-4.31 for n = 13 and n = 55, respectively. The general trend in
the variation of ¢ with respect to temperature is that ¢ gradually increases
with temperature. However, there are some regions where fluctuations ap-
pear in o. The rapid change in o describes the begining of distortion in the
structure. It first decreases to a minimum, then increases to a maximum.
This shows a high distortions in the structure. This behaviour is considered
as melting in clusters. We took the average of the first minimum and the
first maximum as the melting temperature. The corresponding values for
n = 13 and n = 55 clusters are T = 1350 K and T = 975 K, respectively.

We also studied the standard deviation behaviours of inner shells of n = 55
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cluster as a function of temperature. The graphs of Standard Deviations of
N, s =1—3 of n = 55 versus Temperature are given in Figs. 4.32-4.34. The
calculated melting points are given in Table 4.5. The present results show

that melting starts from outermost shell for multi—shell clusters.
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Figure 4.23: The variation of average interaction energy, E, (in eV),as a
function of temperature for n = 13 cluster by using modell.
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Figure 4.25: The variation of average interaction energy, E;, (in eV),as a
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Figure 4.26: The distortions in structure for n = 13 cluster between T' =
900 K and T = 1500 K.
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Figure 4.27: The distortions in structure for n = 13 cluster between T' =
3900 K and T = 4500 K.
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Figure 4.28: The distortions in structure for n = 55 cluster between T =
300 K and T'=1200 K.



Figure 4.29: The distortions in structure for n = 55 cluster between T =
3900 K and T' = 6900 K.
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Figure 4.30: Standard Deviation (o) versus Temperature (in K) for n = 13
cluster.
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Figure 4.31: Standard Deviation (o) versus Temperature (in K) for n = 55

cluster.
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Table 4.5: Calculated melting points for n = 13, n = 55 clusters and inner
shells of n = 55 cluster.

clusters Melting
and Temperature
shells (in K)
n=13 1350

N, of n=>55 1275

N, of n =55 1250

N; of n =55 975
n==5a9 975
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Figure 4.32: Standard Deviations of N; of n = 55 cluster versus Temperature
(in K).
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Figure 4.33: Standard Deviations of N; of n = 55 cluster versus Temperature
(in K).
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Figure 4.34: Standard Deviations of N3 of n = 55 cluster versus Temperature
(in K).
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CHAPTER 5

CONCLUSION & DISCUSSION

In this study, the structural stability and energetics of Cu, (n = 13 — 135)
shell-like structured clusters (generated from fecc crystal structure) at tem-
peratures T = 1 K and T = 300 K and the melting behaviour of clusters
n = 13 and n = 55 have been investigated by using the Molecular-Dynamics

technique.

In the simulation an emprical potential energy function (PEF) proposed
by Erkog¢ has been used, although it is formed from pair-interactions only, it
also contains many—body effects. The PEF satisfies the bulk cohesive energy,
and the bulk stability condition exactly. It also gives the elastic constants
and bulk modulus of copper. This PEF was applied for the stability and
energetics of copper clusters. Therefore the present PEF satisfies some cluster

and bulk properties of copper.

For microclusters, there is a relation such as; ry < r < d,,, where 7y is the
dimer seperation, d,, is the nearest—neighbour distace in the crystal and r is
the nearest-neighbor distance in the cluster. We have found that the order
changes for shell-like clusters. The anology is such that; ry < d,.,, < r. It has
been found that the average interaction energy per atom, ®/n, in the cluster

92



decreases and reaches an asymptotic value as the cluster size increases. The
calculated values for Ideal, T = 1 K and T = 300 K are given in Table
4.4. Delley et al. [74] calculated the binding energies for fcc Cuys and Cuyg
clusters by using self-consistent one—electron local-density theory. The cal-
culated binding energy per atom of Cu;3, Curg are 2.19 and 3.03 eV/atom,
respectively. In the work of Xie et al. [75], comparative calculations of the
binding energy of relaxed closed—shell clusters of icosahedral and cubocta-
hedral (authors prefer it to refer as fcc because of its generation from fec
crystal) symmetry were reported. The atoms are presumed to interact via
the Aziz—Chen (HFD—C) pair potential. The binding energy per atom of Cuys,
Cuss for fce structure are 3.04 and 4.59 eV /atom, respectively. As it is seen
from Table 4.4, our results and above results do not suit numerically and
even they do not agree with each other. The reason for that is, the nature
of calculations are very different from each other (such as in Delley et al.’s
work; ab initio, in Xie et al.’s work; Monte Carlo, in our work; Molecular
Dynamics simulation methods). However, the ratio of results is taken as a
criteria of comparision. The ratios for Delley et al.’s, Xie et al.’s and for our
work are given in Table 5.1 for a quantitative comparision. The results are
comparable with each other. There is no available data for copper clusters

n = 19,43, 87,135 in the literature.
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Table 5.1: The ratios of average interaction energy per atom for Cu, (n =
13,55,79) clusters.

Clusters Delley Xie Present calculations
[74] [75] Ideal T=1K T=300K
Cui3/Cuss —  0.6626 0.6494 0.6875 0.6871
Cuy3/Cuz 0.7228 —  0.6014 0.6646 0.6501

We have melted n = 13,55 clusters as the second part of our work. We
chose n = 13 cluster because of its high symmetry, and n = 55 cluster to see
the melting behaviour of a multi—shell structure. We took the fluctuations of
standard deviations of interatomic distances between the central atom and
atoms surrounding it as the defination of melting[76]. The corresponding
values for n = 13 and n = 55 clusters are T' = 1350 K and T = 975 K,
respectively. Garcia et al. have carried out molecular dynamic simulation
to study the structure and melting of Cuys cluster by using the Voter and
Chen version of the embedded—atom model. Cluster has structure based on
icosahedral packing. Their result for melting is T'(Cuy3) = 1041 K. The
corresponding experimental bulk melting temperature is T(Cu) = 1358 K
[48]. There is no available data for T(Cuss) in the literature. It has been
found that the melting temperature decreases as cluster size increases, and

for clusters with multishell structures melting starts from the outermost shell.

The ab initio calculations for Copper clusters (particularly microclusters)
[74, 77~87] do not totally agree with each other. Therefore, paremeterised
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models seem to became feasible in this respect, but the choice of potential
energy function is an important task, since simulation results show strong
dependence on the functional form of the potential to avoid the shortcomings
in small—cluster research based on the computer simulation.

We investigated cluster properties of Copper element. But, it is also
possible to investigate different elements by using present computer program
and present PEF, if the PEF is paremeterised with respect to the properties of
the element. It may also be proposed to study on the nucleation phenomena
and radiation damage on clusters as future works by using present computer

program with small modifications.
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ACRONYMS

Auger electron spectroscopy
Configuration interaction

Central processing unit

Energy minimization

Extended x—ray absorbtion fine structure
High-resolution electron microscopy
Low—energy electron diffraction
Liquid—metal ion source
Multi—configurational self-consistent field
Monte Carlo

Molecular Dynamics
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Radial electron distribution
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SCF Self—consistent field

SIMS Secondary ion mass spectroscopy

STED  Scanning transmission electron diffraction
STEM  Scanning transmission electron microscopy
TEM Transmission electron microscopy

TOFMS Time-of-flight mass spectroscopy

TPD Temperature programmed desorption

UHV Ultrahigh vacuum

UPS Ultraviolet photoelectron spectroscopy

WF Work function

XPS X-ray photoelectron spectroscopy
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APPENDIX B

MAXWELL-BOLTZMANN VELOCITY DISTRIBUTION

B.1 The distribution of molecular velocities

The first step is to calculate the partition function,
Z =Y gjexp(—E;/kT) (B.1)
i

where &; is the energy and g; is the degeneracy of each level.

NZRV 2
E = —’—%——, n; =nj +n?+n’ (B.2)

Total number of possible states in all energy levels up to and including the
energy £&;,

3
Total number of possible states between £; and &£; + AE; (degeneracy of the

macrolevel),

s
inserting the expressions for AG; and £;, we have

K2V -2/3

T 2 :
Z = zj:AGjewp(—Sj/kT) =3 Ej:njemp(— e~ n2)An;
T e RZV 23 2rmkT
=3 | nleap(———n2)dn; = V(T (B.5)
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The partition function therefore depends both on the temperature T' and the
volume V', which corresponds to the general extensive variable. The impor-
tance of the partition function Z is that in Maxwell-Boltzmann andclassical
statistics, all the thermodynamic properties of a system can be expressed in
terms of In Z and its partial derivatives. According to Maxvell-Boltzmann
Distribution,

N
AN; = —AGeap(—€;/kT) (B.6)

where N is the total number of molecules with energies up to and including

the energy &;; AN is the average occupation number of the macrolevel and

n2h?V-23 1 s 4rm3V
8]- = Lg—fr = —2—va?, AG] = -2—R?A'I’LJ - AG.U = h3 nZA‘U
It follows from these equations that, in velocity space,
_AN m 4 /2.2 mu?

The quantity N, represents the average total number of molecules with all
speeds up to and including v, and AN, is the average number with speeds
between v and v and Aw.

It is helpful to visualize the distribution in terms of ‘velocity space’. Imag-
ine that at some instant a vector v is attached to each molecule represent-
ing its velocity in magnitude and direction, and that these vectors are then
transferred to a common origin, resulting in a sort of spiny sea urchin. The
velocity of each molecule is represented by the point at the tip of the corre-
sponding velocity vector. Fig. B.1 shows one octant of this velocity space.
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Geometrically speaking, the quantity N, represents the average total num-
ber of represantative points within a sphere of radius v, andAN,, the number

within a spherical shell of radius v and thickness AN,.

Tz

Figure B.1: Diagram of velocity space.
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The coefficient of AN, in Eq.(B.7), equal to the ratio %,depends only
on the magnitude of v, or on the speed. It is called the Maxwell-Boltzmann

speed distribution function and is plotted as a function of v on Fig. B.2.

If velocity space is subdivided into spherical shells of equal thickness,
the speed v, at which the distribution function is a maximum is the radius
of that spherical shell which includes the largest number of representative
points. The speed v, is called the most probable speed. To find its value,
we take the first derivative of the distribution function with respect to v and

set it equal to zero dN,/dv = 0.

U = 25 (B.8)

The distribution function can now be expressed more compactly in terms

of vy,

—v e:z:p(—g—)Av (B.9)

AN, 4N , v?
) v e:np(—a (B.10)
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Figure B.2: Graph of Maxwell-Boltzmann speed distribution function.

Average or arithmetic mean speed is,

®=%Z'0AM,

r 4 /w'v?’em (—f-)dv— v
vl Jo 4 2’ T " mm

The root—mean-square speed is

o 2
e = VP = (3 S PANY = (s [ oheap(— 2 )do)
0 m

3
T,

3 |3kT
= 2 =4[22 B.
2" m (B-12)

In summary, we have

Uy = -Z—k—z, v = 2'55kT, Vs = 8kT (B.13)
V m V " m V m
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314

Ve O \v,,.,.,

Figure B.3: Most probable (v,,), arithmetic mean (), and the root~mean—
square (Vnms) Speeds.

The three speeds are shown in Fig. B.3,

The relative magnitudes of the three, at a given temperature, are [88]

U 20 Upms = 1 : 1.128 : 1.224.

B.2 Algorithm for Maxwell Velocity Distribution

— Setting initial velocities via randomly distribution of velocities around

Um

— According to the Kinetic Theory,

It is needed to find the most probable velocity v,,, so using the re-

leations,

- 3kT

2

m
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[= | 3T
== 2: —
Vrms v m
v "“/2'0
m 3 rms

So, the expression for the most probable velocity v,,,

Then normalization of this vector by dividing v/3, that is the assump-
tion of the radius of velocity space constituted by equal components in
magnitude, giving the radius of the spherical shell which includes the

largest number of representative points,

Using a random number generator giving values (—1,1),
Velocity Components = (Vmean — Vmean * RandomNumber)

velocities (in all directions) distributed by using this procedure,

Finding the averages values for each distributed velocity directions

Dividing each components to radius vector which is, ((%)? + (5,)% +
(7,)%))'/2, then finding direction cosines which are useful for scaling

distributed velocities with repect to the given temperature

Calculating kinetic energy and temperature with repect to the calcu-
lated v,, as,

Kinetic Energy = %M (gv,‘i)
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Calculating the scaling factor,

(Temperature given | Temperature calculated)/? = ScaleFactor

Redistributing the initial speeds with respect to scaling factor by mul-

tiplying each component by scale factor,

v; = (| 7'|) * ScaleFactor, i=1,2,3

Substracting from average values v; — ¥; gives diffrences from averages,
these are new scales and adding to each component of each atom gives

new speeds of each atom in each direction,

Finding the averages for each distributed velocity directions v, %, ¥,

as,
N
v; = % za: 'Ui

Finding the radius vector by,

Um = ((?7::)2 + (”—y)2 + ("72)2)1/2
Finding kinetic energy by,

.. 1.3,
Kinetic Energy = -2-M (—z-vm)

Finding calculated temperature,

KE .

TE e = —5-2
cal %kB

Since it has the same value with the given temperature, the initial
velocities have been distributed successfully for each atom in all direc-

tions.
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APPENDIX C

ALGORITMH AND FLOWCHART OF THE PROGRAM

C.1 Algorithm
— Reading initial coordinates from the input file,

— Setting initial velocities according to the Maxwell-Boltzmann velocity

distribution,
— Calculating initial potential energy of the system (at time step n),
— Starting MD steps,

— Calculating velocity and position of the atoms using the velocity summed

form of Verlet Algorithm (NVE MD Velocity Form)|[68],
— Calculating force by present coordinates (at time step n),
— Computing the positions at time step n + 1 as,

ri(n+1) = ri(n) + Avy(n) + %mA2Fi(n)

— Storing the force values (F;(n)) at time step n,

— Calculating force by new coordinates (at time step n + 1),
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— Computing the velocities at time step n 4+ 1 as,

v(n+1) =vi(n) + %[F,(n + 1) + Fi(n)]

— Calculating the potential energy of the system at time stei) n+1,

— Calculating the temperature that the system reached by summing the

kinetic energy of each atom,

il | 3 3m &
ngvf=§kBNT—->T———NZ =TCALC

i

—~ Scaling the velocities by scale factor,

SCFAC = \/ TE | TCALC — multiplying by each speed component

— makes the system having initially given temperature

— Calculating total energy,

«— Starting the procedure again until the initially given step number reached.
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C.2 Flowchart

( Input —'F),-o

Setting Initial Values of ;4

Calculate PEF

MDS =1

Calculate o';(n), 7 i(n)
Calculate ?,(n)
Compute new positions 7 ;(n + 1)
Compute new forces _I:‘)z(n +1)
Compute new velocities @';(n + 1)
Calculate PEF(n + 1)
Calculate Temperature and Scale
Calculate By = Ep + Ex

§i=1,..., N;n =MD time step)

MDS=MDS+1

NO

MDS>MDSTOP
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APPENDIX D

DETERMINATION OF AT

It is found by using dimer values of Copper (see Figure I1.1).

ro =222 A
80 =2.01eV
m = 63.546 atom gr/mol

An equality for At can be found by using the equation;

1, 1 (Agz 2
2 laz=r, =& = gm (E)

such as;

m'r02

t=
o 2&,

with numerical values for Copper;

6.0225«10%atom 2
~19€eV m
2x2.01%1.6*10 19'67169?

Ap— J 63.546 2o 5 10-3kg * (2.2 + 10-10m)?

(D.1)

(D.2)

= 80.91572728%x10 %5

From the experience of scientists working in this field, it was determined

that 1/100 of the calculated At is the value works well in MD simulations.

Therefore the determined molecular dynamics time step value in this work

is;

DT = 0.8991572728 x 10 53,
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