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ABSTRACT

O(N) PARALLEL TIGHT-BINDING MOLECULAR-DYNAMICS

COMPUTER SIMULATION: APPLICATION TO CARBON NANOTUBES

Ozdogan, Cem
Ph. D., Department of Physics

Supervisor: Assoc. Prof. Dr. Giilay Dereli

June 2002, 119 pages

It is aimed to develop an O(N) Parallel Tight-Binding Molecular Dynam-
ics (TBMD) algorithm in the simulations of Single Wall Carbon Nanotubes
(SWCNT). Traditional TB solves the Schrédinger equation by direct matrix
dioganalization, which results in cubic scaling with respect to the number of
atoms, namely, Order-N? (O(/N3)) TBMD. The main limitation of this method
is the increasing simulation time with system size. It is needed to speed up
the simulations by applying some computational techniques. We have applied
O(N) (Divide and Conquer scheme) technique in Carbon nanotube simulation
and parallelized our O(N) TBMD program. We have approved that paral-

lelization technique is beneficial by obtaining speed up and efficiency values



for different number of processors. Benchmark tests have been performed
on distributed memory system having 8 PCs using Parallel Virtual Machine
(PVM) library.

We have applied our developed O(N) parallel TBMD technique to 10x10
and 17x0 structured CNTs. These tube structures are chosen because they
have different chirality but similar diameter. We have found the Fermi en-
ergy (around 3.7 eV) very smilar for both tube structures since they have
the same radii. On the other hand density of states (DOS) results show that
10x10 tube has metallic behavior and 17x0 -tube has semiconductor behavior
as expected. Next, the structural stability and energetics of 10x10 and 17x0
tubes are investigated. Elastic properties under uniaxial strain are studied
at room temperature. The Young's modulus, tensile strength, Poisson ratio
and frequency of vibrations are calculated. We have observed disintegrations
under large strains. These are shown in graphs of total energy, radial dis-
tribution function, bond-length and bond-angle distribution functions. Also

geometrical structures after simulations are displayed in figures.

Keywords: Carbon, Nanotube, O(N), Parallel, Tight-Binding, Molecular-Dyna-

mics Simulation, Verlet Algorithm, Maxwell Velocity Distribution.
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OZ

N-MERTEBELI PARALEL SIKI-BAG MOLEKULER-DINAMIK
BILGISAYAR SIMULASYONU:

KARBON NANOTUB CALISMASI

Ozdogan, Cem
Doktora, Fizik Boliimii

Tez Yoneticisi: Assoc. Prof. Dr. Giilay Dereli

Haziran 2002, 119 sayfa

Karbon nanotiiblerin simulasyonlarinda kullanilmak {izere N-mertebeli par-
alel siki-bag molekiiler-dinamik bilgisayar simiildsyonu yontemi geligtirilmesi
hedeflenmigtir. Geleneksel SB Schrodinger denklemini Hamilton matrisinin
kogegenleg-tirilmesi ile ¢6zer. Bu da atom sayis ile kiibik orantili olarak bir
¢oziim zamamdir, O(N3) SBMD. O(N3) SBMD yénteminin Karbon nanotiiple-
rine uygulanmasiyla, bu yontemin temel sinirlamasinin galigilan sistemin boyu-
tu ile artan simulasyon zamam oldugu goriilmiigtlir. Bu da simulasyonlan
hizlandirmak igin gesitli yontemler uygulanmas) gerektigini gosterir. Hesap
zamanmm azaltmak icin kullanilan bu tekniklerden birisi atom sayis: ile dogru

v



orantili bir ¢éziim zamamdir, O(N) SBMD. Bir diger y6ntem ise paralel hesap
yontemidir. O(N) SBMD (B6l ve Kullan (Divide and Conquer) yaklagim
ile) y6ntemi Karbon nanotiib simulasyonu programimiza uygulanmig ve daha
sonra O(N) SBMD programimida paralellestirilmigtir. Sonuglar paralel hesap
tekniginin uygulanmasinin gerekli oldugunu gostermistir. Hiz testleri 8 bilgisa-
yar ve PVM kiitiiphanesi iceren dagitik bir sistemde yapilmigtir.
Geligtirdigimiz O(N) Paralel SBMD programini 10x10 ve 17x0 yapisindaki
Karbon nanotiiblerinin ¢alisilmasinda kullandik. Bu tiib yapilarinin segilmesi—
ndeki neden farkh: ’chiralty’e sahip olmalarina ragmen cap biyiikliiklerinin
benzer olmasidir. Fermi enerji seviyesi degeri (= 3.7 eV') her iki tiib yapisinin
degisik ’chiralty’i fakat aymi yaricap degerine sahip olmalarindan dolay1 gok
yakin bulunmustur. Ote yandan durum yogunluklari sonuglar: beklenildigi
gibi 10x10 tiib igin iletken 17x0 tiib igin de yaniletken yap1 gostermistir.
Daha sonra 10x10 ve 17x0 tiiblerinin yapisal dengeleri ve enerjileri incelendi.
Elastik ozelliklerinin eksen boyunca yapilan bask} ile degismesi oda sicakhiginda
caligilmigtir. Young modiiliisii, germe giddeti, Poisson oran: ve salinim frekans:
degerleri hesaplanmistir. Yiiksek bask: oranlarinda kopmalar gozlendi. Biitiin
bu sonuclar toplam enerji, radyal dagilim fonksiyonu, bag-ags1 ve bag-uzunlu-
gu fonksiyonu grafiklerinde goriilmektedir. Ayrica simulasyonlar sonunda elde

edilen geometrik yapilar da resimlendirilmistir.

Anahtar Kelimeler: Karbon, Nanotiip, N-~Mertebe, Siki-Bag, Molekiiler-Dina-

mik Simiildsyonu, Verlet Yontemi, Maxwell Hiz Dagilim.
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CHAPTER I

INTRODUCTION

Nanotechnology is predicted to spark a series of industrial revolutions in the
next two decades that will transform our lives to a far greater extent than
silicon microelectronics did in the 20® century. Carbon nanotubes could play
a pivotal role in this upcoming revolution if their remarkable electrical and
mechanical properties can be exploited. Nanotubes have an impressive list of
attirubutes. They can behave like metals or semiconductors, can conduct elec-
tricity better than copper, can transmit heat better than diamond, and they
rank among the strongest materials known — not bad for structures that are
just a few nanometers across. Several decades from now we may see integrated
circuits with components and wires made from nanotubes, and may be even

buildings that can snap back into shape after earthquake [1].

Carbon nanotubes were first observed in 1991 by Sumio lijima at NEC in
Japan. These so—called multiwall nanotubes consisted of several concentric
tubes of carbon nested inside each other. Two years later Iijima, Donald
Bethune at IBM in the US and others observed single-wall nanotubes just 1-2
nm in diameter. But the field really took off a few years later when various
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groups found ways to mass—produce high—quality nanotubes. A nanotube can
be either a metal or a semiconductor depending on the way the graphite sheet
is rolled up. Metallic nanotubes are also ideal systems in which to explore
electron transport in one dimension thanks to their near-perfect structures.
Researchers expect to find more complex behavior for multiwall nanotubes

due to their interactions between adjacent layers.

Industry has begun to notice the unique properties of carbon nanotubes.
The first commercial device that uses multiwall nanotubes may be a lamp
that operates on the field-emission principle. Moreover, the field-emitting
characteristics of carbon-nanotube films have attracted serious interest from
the giants of the display. industry. Samsung, for example, plans to market
a flat—panel color display made from multiwall nanotubes within two years.
Meanwhile, research at IBM indicates that nanotube transistors should be
competitive with state—of-the-art silicon devices. Nanotubes could also be

used to store hydrogen to power electric vehicles.

However, many technological hurdles need to be overcome before large—
scale applications reach the marketplace. For example, the techniques that
are used to build electronic components from nanotubes are painstaking and
utterly inappropriate for mass production. But perhaps the most severe lim-
itation is that high—quality nanotubes can only be produced in very limited
quantities~ commercial nanotube soot costs 10 times as much as gold. Al-
though there are many challenges ahead, nanotubes appear destined to open
up a host of new practical applications and improve our understanding of basic

2



physics at the nanometer scale.

Carbon nanotubes were discovered in 1991 by Iijima of NEC Corporation
[2]. Since then, efforts in synthesis, characterization and theoretical investi-
gation on nanotubes has grown exponentially. This is mostly due to their
perceived novel mechanical and electronic properties and their tremendous
potential for future technological applications. In 1993, the simplest kind of
carbon nanotubes, single walled carbon nanotubes, were discovered indepen-
dently by Iijima group [3] and an IBM team headed by Bethune [4]. These
SWNTs can be regarded as a rolled-up graphite sheet in the cylindrical form.
Some specific defect—free forms of these S\WNT show remarkable mechanical
properties and metallic behavior {48]. These materials present tremendous po-
tential as components for use in nano—-electronic and nano-mechanical device
applications or as structural elements in various devices . Various properties

and applications of nanotubes can be found in literature {3, 69].

Using classical molecular dynamics techniques with well parameterized em-
pirical potentials to study the structural, thermal and mechanical properties
of these novel materials is possible. Various researchers have performed such
studies [6]-{11]. However, understanding the electronic properties of these sys-
tems require the use of quantum mechanical description of the system. There
are two possible levels of theory could be used, density functional theory and
tight binding theory.

Starting with the work of Slater and Koster [12], the tight-binding theory of
electronic structure has played an increasingly important role in computational

3
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material science. It has developed as an effective tool for calculations of atomic
and electronic structures, total energies, diffusion barriers, and interatomic
forces of large condensed-matter and molecular systems. The benefits of TB
theory include ease of implementation, low computational workload, robust
transferability as well as relatively good reliability. Yet these features are
obtained by maintaining the underlying formalism at the level of the simplest
.quantum-mechanical treatment of condensed-matter systems and within a

rather intuitive chemical and physical conceptual framework.

The TB theory has been established as a good compromise between ab
initio simulations and model-potential ones, bridging the gap between them,
either as far as the overall numerical efficiency and as far as accuracy con-
cerned. Although original Slater and Koster scheme was originally addressed
to investigate the electronic spectra of crystalline materials only, the TB the-
ory was later generalized to the level of a theoretical scheme for total energy
calculations 13, 14]. Finally, the true foundation of TB theory was established

in the context of the density—functional theory [15].

Molecular dynamics (MD) [16, 17] is a very powerful technique for the
study of materials. This technique can be used to simulate material systems
at different conditions of temperature, pressure etc., including materials at
extreme thermodynamic conditions. It is also useful technique to analyze
complex processes (e.g. kinetic processes) that take place at the atomic scale
in the material. Moreover, MD is a convenient tool for determining the ground
state (i.e. minimize the total energy with respect to the atomic coordinates)

4



of a given material. The main problem in the application of this technique to
the study of real materials is the determination of the forces, f;, between the
atoms forming the system. Once these forces are known, it is straightforward

to perform MD simulations of the material of interest.

TBMD [18] is a computational tool designed to run finite-temperature MD
simulations within the semi-empirical tight-binding scheme. The electronic
structure of the simulated system is calculated by a TB Hamiltonian so tha;t
the quantum mechanical many-body nature of interatomic forces is naturally

taken into account.

TB theory and TB molecular dynamics (TBMD) can be considered as
popular and valuable computational schemes available to material theorists.
The applications range from semiconductors to metals and organic systems,
from bulk to surfaces and interfaces, from ordered to defected an disordered
materials. A wide range of physical properties are currently calculated in this
framework, including structural properties, energetics of defects and surface
reconstructions, cluster properties, diffusion rates, electronic spectra, light—

matter interactions, transport properties of materials and devices, etc.

This thesis is organized as follows; in Chapter II, we have defined the
terminology used in expressing the structure of carbon nanotubes. According
to this terminology we have classified the CNTs. In Chapter I1I section 1-7 we
have introduced the TB formalism and TBMD technique we have used during
our simulations. Along with the parallelization algorithms in section 8 and 9.
In Chapter IV in 3 sections we have displayed our results. In section 1 of this

5



chapter, the effect of the parameters such as buffer size, electronic temperature
and Periodic Boundary Condition (PBC) on the accuracy of O(N) TBMD is
studied. In section 2 parallelization technique is applied to the developed
O(N) TBMD as further improvement in shortening the simulation time. In
section 3 of this chapter, structured stability and energetics of CNTs under
uniaxial strain are studied. In Chapter V conclusion part of the thesis is given.
Appendices contains flowcharts of the programs together with interaction time

and Maxwell-Boltzmann velocity distribution.



CHAPTER 11

STRUCTURE OF SINGLE-WALL CARBON

NANOTUBES

Solid-state devices in which electrons are confined to two dimensional planes
have provided some of the most exciting scientific and technological break-
throughs of the last 50 years. From metal-oxide-silicon field effect transistors
to high-mobility gallinm-arsenide heterostructures, these devices have played
a key role in the microelectronics revolution and are critical components in a

wide array of products from computers to compact—disc players.

However, 1-D systems are also proving to be very exciting. For many
years, studies of quasi 1-D systems, such as conducting polymers, have pro-
vided a fascinating insight into the nature of electronic instabilities in one
dimension. In addition, 1-D devices such as ’electron waveguides’ —in which
electrons propagate through a narrow channel of material- have been created.
Experiments on these devices have shown, for example, that the conductance
of "ballistic’ 1-D systems —in which electrons travel the length of the channel
without being scattered— is quantized in units of e?/h, where e is the charge

7



on the electron and A is the Planck constant.

These systems, however, have been limited by the fact that they are inher-
ently complex and/or difficult to make. What has been lacking is the perfect
model system for exploring one-dimensional transport, a 1-D conductor that
is cheap and easy to make, can be individually manipulated and measured,
and has little structural disorder. Single-wall carbon nanotubes fit this bill
remarkably well. Some nanotubes are semiconductors. They can therefore be
used to construct devices that are one-dimensional anologues of metal-oxide—
silicon field effect transistors, in which the electrons move along the surface of
a thin two—dimensional layers. Other nanotubes, in contrast, are nearly per-
fect metallic conductors, and are a new ’laboratory’ for studying the motion

of electrons in one dimension.

I1.1 Classification of Carbon Nanotubes

A single-wall nanotube is defined by a cylindrical graphene sheet with a diam-
eter of about 0.7 — 10.0 nm, though most of the observed single-wall nanotubes
have diameters < 2 nm. If we neglect the two ends of a carbon nanotube and
focus on the large aspect ratio of the cylinder (i.e., length/ diameter which can
be as large as 10*—10°), these nanotubes can be considered as one-dimensional
nanostructures.

The primary symmetry classification of a carbon nanotube is as either
being achiral or chiral. An achiral carbon nanotube is defined by a carbon
nanotube whose mirror image has an identical structure to the original one.

8
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Figure I1.1:_The unrolled honeycomb lattice of a nanotube. The figure corre-
sponds to Cy, = (4,2),d=dp =2,T = (4,-5), N =28

There are only two cases of achiral nanotubes; armchair and zigzag nanotubes.

The names of armchair and zigzag arise from the shape of the cross-sectional

ring at the edge of the nanotubes.

II.2 Chiral Vector: Cy

The structure of a single-wall carbon nanotube is specified by the vector (0_34
in Fig. I1.1) which corresponds to a section of the nanotube perpendicular to
the nanotube axis (the equator of the nanotube). In Figure IL.1, the unrolled
honeycomb lattice of the nanotube is shown, in which OB is the direction of
the nanotube axis, and the direction of OA corresponds to the equator. By
considering the crystallographically equivalent sites O, A, B, and B’, and by
rolling the honeycomb sheet so that point O and A coincide (and points B and
B’ coincide), a paper model of a carbon nanotube can be constructed. The
vectors OA and OB define the chiral vector C,, and the translational vector
T of a carbon nanotube, rape.ctively,‘ as further explained below. The chiral
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vector C}, can be expressed by the real space unit vectors a; and ay (see Figure

I1.1) of the hexagonal lattice defined in Eqn. IL1:
Cp = nd; + mdz = (n,m) (n,m are integers, 0 < |m| < n) (I1.1)

An armchair nanotube corresponds to the case of n = m, that is C = (n,n),
and a zigzag nanotube corresponds to the case of m = 0, or C, = (n,0).
All other (n,m) chiral vector correspond to chiral nanotubes. Because of
the hexagonal symmetry of the honeycomb lattice, we need to consider only
0 < |m| < n in G, = (n,m) for chiral nanotubes.

The diameter of the carbon nanotube, d, is given by L/, in which L is

the circumferential length of the carbon nanotube:

dy=L/m, L =|Ch| = VCh-Ch =aVn2+m?+nm (IL.2)

It is noted here that di and a3 are not orthogonal to each other and that the

inner products between d; and a3 yield:

- - 2 -

2
- - . a
di-di =dy-dz=a’, i -B= (I1.3)

where the lattice constant a = 1.444 /3 of the honeycomb lattice.

The chiral angle 8 (see Figure II.1) is defined as the angle between the
vectors (:';, and di, with values of 6 in the range 0 < |0| < 30°, because of the
hexagonal symmetry of the honeycomb lattice. The chiral angle & denotes the
tilt angle of the hexagons with respect to the direction of the nanotube axis,
and the angle 4 specifies the spiral symmetry. The chiral angle  yields for an

10



expression for cosé:

C-"h-a'i _ 2n+m

cosf = — =
|ICillal] 2vn2+m? +nm

(11.4)

thus relating 8 to the integers (n,m) defined in Eqn.IL.1. In particular, zigzag

and armchair nanotubes corresponds to § = 0° and 8 = 30°, respectively.

I1.3 Translational Vector: T

The translational vector T is defined to be unit vector of a 1D carbon nanotube.
The vector T is parallel to the nanotube axis and is normal to the chiral vector
C}, in the unrolled honeycomb lattice in Figure IL.1. The lattice vector T shown

as OB in Figure II.1 can be expressed in terms of the basis vectors as:
T = t,d} + tody = (t1,t2) (t1,t2 are integers) (11.5)

The vector T corresponds to the first lattice point of the 2D graphene sheet
through which the vector OB passes. From this fact, it is clear that ¢; and ¢,
do not have a common divisor except for unity. Using C,-T = 0 and Eqns.

I1.1, I1.3, and IL5:

2m+n 2n+m

(1L6)

where dp is the greatest common divisor (gcd) of (2m+n) and (2n+m). Also
by introducing d as the greatest common divisor of n and m, then dgr can be

related to d by,

d if n—mis not a multiple of 3d

3d if n—mis a multiple of 3d.

11



The length of the translation vector,T), is given by:
T =|T| =v3L/dg (IL.8)

where the circumferential nanotube length L is given by Eqn. I.2. The length
T is greatly reduced when (n,m) have a common divisor or when (n-m) is a
multiple of 3d.

The unit cell of the 1D carbon nanotube is the rectangle OAB’B defined
by the vectors dh and ’f, while the vectors @} and d3 define the area of the
unit cell of 2D graphite. When the area of the nanotube unit cell EC_'}; X f| is
divided by the area of a hexagon |d] X d3|, the number of hexagons per unit

cell N is obtained as a function of n and m as:

v = CuxT| _ 2(m*+n?+nm) _ 20
T ody X dy] dr " a2dp

(IL.9)

where L and dp, are given by Eqns. I1.2 and I1.7, respectively. and each hexagon
contains two carbon atoms. Thus there are 2N carbon atoms (or 2p. orbitals)
in each unit cell of the carbon nanotube.

In Table II.1, it is listed the characteristic parameters of carbon nanotubes
specified by (n,n) and (n,0).

Table IL.1: Values for the characterization parameters for carbon nanotubes
labeled by the chiral vector C;, = (n,n) and Cj, = (n, 0)

C. d dg d&(A) Lja T T/a N
(p) n 3n V3nma/r v3n (1,-1) 1 2n
(0 n n ma/mr 1n (1,-2) V3 2n
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All parameters defined are summarized in Table II.2. The values of all

parameters listed depend on two integers, n, and m, of the chiral vector Cp.

Table I1.2: Parameters for Carbon Nanotubes; symbols are namely; a: length
of unit vector, di,ds umt vectors, b1, bz remprocal lattice vectors, C'h chi-
ral vector, L: length of C'h, d;: dlameter f: chiral angle, d: ged(n,m), dg:
ged(2n+m,2m+n), T: translational vector, T: length of T, N: Number of
hexagons in the nanotube unit cell .

symbol formula value
a a=v3ac-_c = 2.49A ac-—¢ = L44A
di,dy ‘/75,% a, (—‘é—s, =2l) a x,y coordinate
by, by 51 o (%, -1) 2 x,y coordinate
Ch Ch = ndy + ma; = (n, m) (0 < |m| < n)
L L = |Cp| = avn? + m? + nm
dt dt = L/7rm
a il 3 o
0 Slne—wrm—;;';ﬂ—m 0<|6|<30
cost = s tanf = im
d ged(n,m)
dg dr = { 3(2 if n-m is not a multiple of 3d
if n-m is a multiple of 3d.
T T = t1d; + tody = (t1,12) ged(ty, t2)=1
tl 2T;lo+n t, = _27;+m
SR
T =|T| = V3L/dg

2.2
N N = 2§m +dn +nm!
R
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Figure IL2: The Brillouin zone of a carbon nanotube is represented by the line
segment WW’ which is parallel to K. The vectors K, and K, are reciprocal
lattice vectors corresponding to Cy, and T respectlvely The figure corresponds
to Gy = (4,2), T = (4,—5), N = 28, K, = &itth) g, — (h:-26s)

II1.4 Unit Cells and Brillouin Zones

The unit cell for a carbon nanotube in the real space is given by the rectangle
generated by the chiral Yector C,, and the translational vector T, is shown in
OAB’B in Figure I1.2. Since there are 2N (.:arbon atoms in this unit cell, we
will have N pairs of bonding 7 and anti-bonding 7* electronic energy bands.
Expressions for the reciprocal lattice vectors K, along the nanotube axis
and K, in the circumferential direction (since nanotubes are one- dimensional
materials, only Kj is a reciprocal lattice vector. K, gives discrete k values in
the direction of C_"h.) are obtained from the relation E; - K"j = 2md;;, where R;
and K. ; are, respectively, the lattice vectors in real and reciprocal space. Then

using Eqns. IL.6, I1.9, and the relations,

Co-Ki=2r, T-K1=0,C,- K, =0, T-K,=2m, (I1.10)

we get expressions for K 1 and Ky

- 1 = e > 1 n =
Kl = ’ﬁ(_tzbl + tlb2)’ K2 = —N'(mbl - nb2) (II'll)
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where b-; and b; are the reciprocal lattice vectors of two— dimensional graphite.
In Figure I1.2, the first Brillouin zone of this one-dimensional material is the
line segment WW’. Since NK 1 corresponds to a reciprocal lattice vector of 2D
graphite, two wave vectors differ by N K, are equivalent. Since ¢, and ¢, do not
have a common divisor except for unity, none of the NV —1 vectors uI{: 1 (where
p=1,...,N — 1) are reciprocal lattice vectors of 2D graphite. Thus the iV
wave vectors uI{" 1 (u=0,...,N —1) give rise to N discrete k vectors, .\ one
dimensional energy bands will appear. Because of the translational symmetry
of ’f, we have continuous wave vectors in the direction of K, for a carbon
nanotube of infinite length. However, for a nanotube of finite length L., the
_spacing between wave vectors is 27/ L; this spacing between wave vectors has

been observed experimentally [19].

I1.5 Electronic structure of nanotubes

The remarkable electrical properties of single-wall carbon nanotubes stem from
the unusual electronic structure of 'graphene’, the 2D material from which they
are made. Graphene is simply a single atomic layer of graphite, the material
that makes up pencil lead. Graphene has a two—dimensional honeycomb struc-
ture, made up of sp?>-bonded carbon atoms, see Figure II.1. Its conducting
properties are determined by the nature of the electronic states near the Fermi
energy, Er, which is the energy of the highest occupied electronic state at
zero temperature. The energy of the electronic states as a function of their
wavevector, k, near Er; 'band structure’, which is determined by the way in
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which electrons scatter from the atoms in the crystal lattice, is quite unusual.
It is not like that of a metal, which has many states that freely propagate
through the crystal at Er. Nor is the band structure like that of a semicon-
ductor, which has an energy gap with no electronic states near Er due to the

backscattering of electrons from the lattices.

The band structure of graphene is instead somewhere in between these ex-
tremes. In most directions, electrons moving at the Fermi energy are backscat-
tered by atoms in the lattice, which gives the material an energy band gap like
that of a semiconductor. However, in other directions, the electrons that scat-
ter from different atoms in the lattice interfere destructively, which suppresses
the backscattering and leads to metallic behavior. Graphene is therefore called
a 'semimetal’, since it is metallic in the special directions and semiconducting

in the others.

To make a 1D conductor from this 2D world, it is followed the lead of string
theorists and curl up one of the extra dimensions to form a tube. The resulting
periodic boundary conditions on the wavefunction quantizes &, the component
of k perpendicular to the axis of the tube: in the simplest case, k, = 2mn/C,
where C is the circumference of the tube and 7 is an integer. The component
of k along the length of the tube, meanwhile, remains a continuous variable.
The bottom line is that a nanotube can be either a metal or a semiconductor,
depending on how the tube is rolled up. This remarkable theoretical prediction

prediction has been verified using a number of measurement techniques [20)].

The electronic structure of a single wall nanotube can be obtained simply
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Figure I1.3: The condition for metallic energy bands: if the ratio of the length
of the vector YK to that of K, is an integer, metallic energy bands are ob-
tained.

from that of 2D graphite. By using periodic boundary conditions in the circum-
ferential direction denoted by the chiral vector C_"h, the wave vector associated
with the C-"h direction becomes quantized, while the wave vector associated
with the direction of the translational vector 7 (or along the nanotube axis)
remains continuous for a nanotube of infinite length (for a real carbon nan-
otubes, since the length of a nanotube (L¢y) is on the order of um, discrete &
vectors (Ak = 2rr/Lcn) can be expected.) Thus the energy bands consist of a
set of 1D energy dispersion relations which are cross sections of those for 2D
graphite.

When the energy dispersion relations of 2D graphite, Egop (E) at line seg-
ments shifted from WW’ by uK;, (u =0,...,N — 1) are folded so that the
wave vectors parallel to K, coincide with WW’ as shown in Figure IL.3, N

pairs of 1D energy dispersion relations are given by
“(k) gzp(l [+yK1) (p= HN-1, and—T<k<—-)
K,
(I1.12)

corresponding to the energy dispersion relations of a single wall carbon nan-

17



otube. The N pairs of energy dispersion curves given by Eqn. I1.12 correspond
to the cross sections of the 2D energy dispersion surface for 2D graphite, where
cuts are made on the lines kKy/| K|+ uK,. If for a particular (n,m) nanotube,
the cutting line passes through a K point of the 2D Brillouin zone, where the
7w and 7* energy bands of 2D graphite are degenerate by symmetry, the 1D
energy bands have a zero energy gap. Further the density of states at the
Fermi level has a finite value for these carbon nanotubes, and they therefore
are metallic. If, however, the cutting line does not pass through a K point,
the the carbon nanotube is expected to show semiconducting behavior, with a
finite energy gap between the valance and the conduction bands.

The condition for obtaining a metallic energy band is that the ratio of the
length of the vector YK to that K, in Figure IL3 is an integer. Since ;‘,he
vector YK is given by

- n+m >

YK = K
3 1

(I1.13)

the condition for metallic nanotubes is that (2n+m) or equivalently (n-m) is a
multiple of 3. Particularly, armchair nanotubes denoted by (n,n) are always
metallic, the zigzag nanotubes (n,0) are only metallic when 7 is a multiple of

3.
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CHAPTER III

METHOD

III.1 Tight-Binding Formalism

Hy=T,+T,+ U, + U +U; (III].)

where;

T;: Kinetic energy of ions,

T,: Kinetic energy of electrons,

U,: Electron—electron interaction energy,

U,;: Electron-ion interaction energy,

Us;: Ton-ion interaction energy.

The many-body Hamiltonian is reduced to the problem of one electron moving

in average field due to the other electrons and to the ions.

H|¢n) = gnl"nbn) (III2)

where,

H:reduced one electron Hamiltonian

|[,):its n* eigenfunction

&, : the energy of the n** single—particle state
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In TB formulation, |¢,) are in the form LCAO (linear combination of
atomic orbitals) |@1.), where | : quantum number index, « : labels the ions.

| $10):basis set not orthogonal, use of non—orthogonal basis set is not numer-
ically convenient in most cases. The evaluation of overlap integrals [ ¢ 51adi
causes high workload.

1t is possible to orthogonalize the atomic orbitals |¢;,) in such a way that
the new basis set functions still maintain their symmetry properties. New
orthogonal basis {¢,}: Léwdin orbitals [13, 21].

The Schrédinger equation for the single particle states is finally reduced to

> ((prslHla) — Enddap) Cig = 0 (IIL.3)
7]

The matrix elements of the Hamiltonian are evaluated by fitting a suitable
database obtained either from experiments or by first principle calculations.
Typically, the fitting is operated onto the electronic energy bands.

TB parameters as low as possible, number of approximation

e a minimal basis set is selected (i.e. just sp® basis set is used for silicon

and carbon)
e only two—center integrals are taken into account

o short-range interactions are assumed

Once the single-particle energies are known by solving the secular (II1.3),
the total energy E: of a system of ion cores and valance electrons can be
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written as:

Etat = Z gnf(gny T) + Lru - Uee (III.4)

where,

f(&n, T):Fermi-Dirac Distribution Function

U,:corrects the double counting of ee interaction in the first term

The sum of over all the single-particle energies is commonly named band
structure energy Ej,.

Effective repulsive potential; Urep = Usi—Uee = 3., 550 P(Tag) can be expressed
as a sum of suitable two—body potentials which contains the effects of both the
overlap interaction originated by the non-orthogonality of the basis orbitals

and the possible charge transfer effects.

II1.2 Tight-Binding Molecular Dynamics

During an MD run we must calculate TB matrix elements (pyrs|H|@ia) be-
tween atoms which are not at their equilibrium positions. Consistently we
need a scaling law h(r,g) for the variation of fitted (pps|H|pi1,) against ropg
(Transferable TB). It is usually determined, along with ®(rag), by fitting the
zero temperature cohesive—energy curves of the system of interest, calculated
from first principle for different phases.

The forces fa(a = 1,...,N) needed to move atoms can now be straight
forwardly evaluated from the TBMD Hamiltonian.

2

21:;: + 3 Enf(EnsT) + Uep (IIL5)

Hreup =),

21
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and are given by

- oH
fom =~ S nl g ) (€ T) - 63%—?- (11L6)

Hellmann-Feynman contribution to the total force can be calculated as,

0H 18 1~ (T
S (Wl ) £ (60 T) = =2 X £ (60, T) zchﬂ?ﬂ%(lﬁ)—cg (11L7)
n @ n Iy 8 o
where,
Hypry = h(rsy)(@rs| H|Cty) |rs,=ro (111.8)

we need the full spectrum of eigenvalues {£,} and eigenvectors {C[.} in order
to calculate E;, and Hellmann-Feynman forces.
The zero-temperature Fermi-Dirac distribution function is assumed every-

where.

III.3 Hamiltonian Matrix
Scaling functions for hopping integrals [22].

To n
scalel,2,83,4 = hq(r) = ha, 5.4 (T0) (7) *

Tey,2,3,4 Tey,2,3,4
SR S
Tey 2,34 d¢=1,2,3,4

Four two—center integrals; ss¢,spo,ppo,ppr interactions, four scaling functions

with;
o = 1.536329A

n=2

22



o sso | spo | ppo | pprw
ha(ro) €V | -5.0 | 4.7 | 5.5 | -1.55
Mo 65| 65 | 6.5 | 6.5
rea (A) [2.18[2.18 218 | 2.18

There are four valance electrons in outermost shell in carbon, each electron
is subject to four interactions with neighbor atom. There are n atoms in the
interaction range for each atom. So, totally, n interactions for one electron and
4 x n interactions for one atom. Hamiltonian matrix is constructed in such a
way; having dimension h(4*N+1,4*N+1), first four rows correspond to inter-
actions of the four electrons of 1** atom. There are N atoms in simulatioﬁ box,
so 4.V rows in matrix. Columns represent the all neighbor atom interactions.
There are n nonzero elements in each row. So first four rows contain 4 % n

interactions (4 * n nonzero term) for first atom.

- -

interactions of 1% electron of 1°t atom with all neighbors

interactions of 2™ electron of 1% atom with all neighbors

interactions of 4 * N** electron of 4 * n** atom with all neighbors
(IIL.10)

-

This matrix is a upper triangle matrix, having nonzero terms only in upper
triangle. This is necessary for diagonalization procedure. After diagonaliza-

tion, band structure energy is computed.
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For first atom (first four rows in matrix), interactions with one neighbor
atom, first subscript gives the electron in atom, second subscript gives the
electron in neighbor atom.

four elements in first row;

Hy 1 = Vo * scalel
Hy o = Vo % 22 * scale2

H,3 =V, % yy = scale2

H, 4 = Vo % 22 % scale2

four elements in second row;

Hy ) = —Vipo * 2T * scale2
Hy g = (Vipo * z2? * scaled + Vppr * (1 — z32) * scaled

Hy3 = (Vipo * scaled — Vi x scaled) * zz  yy

Hyy = (Vppo * scale3 — Vipr * scaled) * zz * zz

four elements in third row;

-
Hj3 ) = —Vps * yy = scale2

H3o = (Vppo * scale3 — Vipr * scaled) x zz * yy

Hj 3 = (Vppo * scale3 * yy? + Vipr * scaled x (1 — yy?))

Hj 4 = (Vipo * scale3 — Vi * scaled) s yy x 22

L od

four elements in fourth row;

H,, = =V, * 2z % scale2
Hyo = (Vppo * scale3 — Vo * scaled) x zz * 22

Hy3 = (Vppo * scale3 — Vypr * scaled) * yy x 22

Hyy = (Vppo * scaled * 222 + Vypr * scaled * (1 — 222))
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where xx,yy,zz are f—:j—, %‘j-, }:-JL, respectively.
After diagonalization by using LAPACK (Linear Algebra PACKage [23],
means that £,’s are found), Hrpup is found by Eq. II1.5. Next step is to find

forces arising from electronic interactions, namely Hellmann-Feynman forces.

I11.4 Hellmann—-Feynman forces

Hellmann-Feynman contribution to the total force can be calculated by taking
derivatives of Hamiltonian matrix elements, see Eq. III.7.

For example, taking the derivative of H; ; with respect to x means the force
between the 1% electron of atom with the 2™ electron of its neighbor in the
x-direction. I will give only open form of FY,, since the other force elements

can be calculated by the same way.

H\ 3 = Vype * Tz * scale2

O0H, 5
T o= d II1.11
F1,2 33712 ( )
T12
xw = e——
T12

Tig =zl —132

Tig = \/(zl —z2)2 4+ (y1 — y2)? + (21 — 22)2

0z12
o z Oscale2 Or
Fia = Vipe [3_1'm xscale? +zzx ——2-  (IL12)
Flz,z = Vipo * [(1 - :czz) * i?%{fg_[_m*m’k Bscailez]
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o @enl-(2)"+ ()
Oscale2 _ scale2 r\ "2
o Tt *“2)*[”"”*(:2) ]

dscalz2 = zz * Oscale2
or
scale?’ = scale2
r
so, the final form is;
F¥y = Vipo * [360162' * (1 - x:r2) + zz * dscalz:2] (II1.13)

ITI1.5 Repulsive Pair Potential

The form of the repulsive potential is as follows [22]:

Ep=)f (Z ¢(rij)) ; f(z) = Co+ Ciz + Coz® + C37® + Cyz* (IIL14)
i\

z=¢(r) = (%)m ezp {m [— (3’":)"% + (;—")m]} (IL.15)
where the parameters have the values;
m = 3.30304 ,
m, = 8.6655 ,
d.=2.1052 4,
Co = —2.5909765118191 eV,
C: = 0.5721151498619 eV,
Cy = —1.7896349903996E — 3 eV
C; = 2.3539221516757E - 5 eV,
Cy = —1.24251169551587TE — 7 eV,
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ro = 1.536329 A

and derivative of the energy expression gives us the force expression

R -2 2 (o) - Sr-3-2s (5 o)

=¥-5 (Z¢ x,,.))) (I1L16)

Fi= —i [Cl:l + CAY + 03A3 + C4A4]
0z

z

with A = ¥, ¢(ri;);

0¢ Or
[] T (IIL.17)
Fi = 21 (5 o) fz 9| (o
7 3¢ : Tij = or reris Oz S——
#ofneigh. 8 F) ¢ or
JZ=:1 a_¢- (zk: ¢(’r]k)) (57: r=ri; (—a_; T=T4;,T=Tij (III‘IS)

#ofneigh. o
[Cl +2C2A + 303.4" -+ 4C4A3] Z {[B] [D] [ ‘U] } +

Tij

#ofneigh. T
> {[01 +2C,E + 3C3E? + 4C, %) [B] [D] [ "] } (IIL.19)

j=1 Tij

with;

( #aﬁmgh ("'u))
B=(2)"eap{m[- (%)™ + (2)"}
(1+mc(") ) ,

and E = (S ¢(r;)).
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II1.6 Molecular-Dynamics Scheme

Given the molecular positions, velocities, and other dynamic information at

time t, we attempt to obtain the positions, velocities etc. at a later time ¢t +4t.

If the classical trajectory is continuous, then estimate of the positions,

velocities etc. at time £ + dt may be obtained by Taylor expansion about time

t:

N =

7t + 6t) = 7(t) + 0tT(t) +

#(t + 6t) = T(t) + 6ta(t) + %6t25(t) ~...

a(t + 6t) = @(t) + 6tb(t) + ...
bt + 0t) = b(t) + ...

Velocity—Verlet algorithm takes the form;
7t + dt) = 7(t) + otv(t) + %&%’i(t)
3t +6t) = 7(8) + %& (@(t) + a(t + 69)]
For velocity by Eq. I11.22;
a(t + 6t) — a(t) = 6th(t)
subs. into eq. II1.21;
(¢ + 6t) = (t) + 6tat) + %Jt [628(2)]

then it takes the form Eq. III.25.
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After computing the total forces for each atom, calculating accelerations

by;
_ f;ot,i(t)

mass

ai(t)

Next to find new positions use these calculated accelerations on Eq. II1.24.
Then again compute the total forces for each atom according to the new co-

ordinates to find new accelerations by:

fe tot,i(t + 6t)

(_1:,' (t + (St) = mass

Last is to compute the new velocities by Eq. III.25.

I11.7 ™MD Time Step

It is investigated for the optimal value of the time step during Molecular Dy-
namics Simulation. The scheme in the Appendix D is used for the value of
time step and then multiples of this number is checked by doing simulations.
Several values are used, namely from 0.02 fs to 5 fs, see the figures II1.1-T11.3.
It is found that after the value of 2 fs the simulation becomes instable and for
the value of 5 fs the structural stability of tube is not sustained any more. It
is decided to use 1 fs value for the Molecular Dynamics Time Step (MD Time

Step).
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I11.8 Parallelization

Simulation of molecular dynamics (MD) systems can be speed up considerably
by parallelizing the existing codes for distributed memory machines. In clas-
sical MD the CPU time is typically function of the square of the number of
atoms. The size of the molecular system which can be solved is therefore of-
ten limited by the CPU available. There are different approaches for reducing
computation time. One consists in parallelizing sequential O(/N?) algorithms.
The other is replacing the calculation of non-bonding forces by a less complex
algorithm which can then be parallelized 24, 25].

One of the standard ways of classifying computer systems is that proposed

by Flynn (1972),

e SISD Single Instruction Single Data

Sequential

e SIMD Single Instruction Multiple Data
Parallel and synchronous, two cases; SM Shared Memory and ICN In-

terconnection Network

e MISD Multiple Instruction Single Data

Practically not useful

o MIMD Multiple Instruction Multiple Data
Parallel and non synchronous, again two cases; SM and ICN. Most pow-
erful and most general.
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Computational scientists have emphasized two phases of molecular dynam-
ics simulation, namely, the computation of force interactions and the integra-
tions of the Newton's equations of motion describing the time evolution of the
atoms in the system. Since particle interact pairwise, computational time for
the force interactions, assuming equal opposite interactions, is proportional to
N(N —1)/2), where N is number of particles in the system. This becomes less
computationally manageable for large N, numerical experiences have indicated
that the force calculations constitute approximately ninety percent of the en-
tire simulation time. Recently, systems with more than one hundred million
particles have been simulated. These simulations are made possible by im-
provements in parallel decomposition algorithms and parallel computer hard-
ware (SIMD and MIMD). Message-passing interface libraries such as PVM
[26], Linda and MPI are making possible simulations on clusters of computers.

There are currently three types of parallel decomposition algorithms, namely,
domain, atom, and force decompositions {27]. In the domain—decomposition
approach particles are distributed to processors based on their positions in
the computational domain. Atom-decomposition techniques assign particles
to processors irrespective of their positions in the computational doma.in.\
Force-decompo- sition methods distribute components in the skew—symmetric,
(sparse, when cutoff radius is assumed) force matrix processors.

Two theoretical indices have been used for meaning the performance of a

parallel algorithms

Speed up: S, =T\/T, (I11.26)
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where T, is the time required for the calculation on a p—processor machine,
and

Efficiency: E, = S,/p (I11.27)

The theoretical maximum value of S, appears to be p (and of E, to be 1)
attained when the algorithm is fully parallel and the calculation is distributed

equally among the p—processors.

II1.9 Example about PVM

This is the program segment that shows how to send and receive data between
processors by using PV and Fortran.

call pvifpack(REALS8,rr2(ii+1:ii+ntask,1:n),n*ntask,1,info)

data is being packed,

call pvmfsend(tids(i),msgtype.info)

sent to processors,

necessary calculation is being done by using this data,
call pvmfrecv(tids(i),msgtype,info)

it is received,

call pvmfunpa.ck(REALS,eri(fatom:la.tom) ,ntask,1,info)

calculated data is located in the respective dimension.
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CHAPTER IV

RESULTS

IV.1 O(N) Tight Binding MD Simulations

Traditional TB solves the Schrédinger equation in reciprocal space by direct
matrix diagonalization, which results in cubic scaling with respect to the num-
ber of atoms. The O(N) methods solve for the band energy in real space
and make the approximation that only the local environment contributes to
the bonding, and hence band energy, of each atom. All the O(N) methods
in which the properties of the whole system are computed (for instance, the
charge distribution, the total energy or the forces on all atoms), provide neces-
sarily approximations to the exact solution of the effective one-electron Hamil-
tonian. These approximations are based on physical assumptions, which are
generally connected to the above mentioned locality or nearsightedness princi-
ple in one way or another. Most of the implementations of the O(N) procedure
have been developed for the orthogonal tight-binding Hamiltonian. The O(N)
techniques may be roughly grouped into two categories: variational methods
and moment-based methods. There are two types of variational methods: the
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density matrix methods and localized orbital methods. There is also a variety
of moment methods. The O(N) scaling, in these approaches, arises from the
decay and/ér truncation of these respective quantities [28]- [30]. It is worth
noting that usually O(N) schemes can be efficiently parallelized through the
use of message passing libraries. In this study, we used the divide and conquer
(DAC) approach (variational method; the density matrix method). The divide
and conquer approach proposed by Yang [30]-[32] was the first linear-scaling
method used to carry out quantum calculations. The basic strategy of this
method is as follows: divide a large system into many subsystems, determine
the electron density of each subsystem separately, and sum the corresponding
contributions from all subsystems to obtain solely from the electron density
[33]. Each subsystem is described by a set of local basis functions, instead
of the entire set of atomic orbitals. The accuracy of the description is en-
hanced by the use of basis functions of neighboring atoms. These neighboring
atoms are called buffer. The Schrodinger’s equation of the buffer has the same
form as in Eqn. III.3. The eigenvalues and vectors are found by diagonalizing

Hamiltonian Matrices for the each subsystem.

N : number ofatoms in the buf fer region
N : number of atoms in the subsystem
NCell : The number of subsystem

o : subsytem

P : projection of #* electron

O = f((&; — u)/kBT) : occupation of it* electron
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n : number of atoms in the system
NN : number ofatoms in the buf fer region

that are in the interaction distance (cutof f)
So,

4N
P'= 2_:1 |H(j, 1))

where H(j,14) is the ji*" eigenvector after diagonalization scheme.

2

O = TG =R

i — pi, 2 - . 12
Pa = Px O = T e ke *,gl'H(“”

then subsystem density;

W 3
Pa = Z Pa
=1
NCell
trace = Y pa

(IV.1)

(IV.2)

(IV.3)

(IV.4)

(IV.5)

Trace must be equal to number of electrons in the system; then for the error:

error =trace—4%n

where,

(IV.6)

f(z) = 1/(1 + exp(z)) is the Fermi function, p is the chemical potential for

the electrons, kp is the Boltzmann constant, and T is the temperature of the

electrons. If the error value is not desired accuracy within the desired electron

temperature; the chemical potential is recalculated as the following:

_ —€error
Hnew = —
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where,

NCell 4N . . .
dp= Y ; [(O°  P') (1 - 0%)/k»sT] (IV.8)

This procedure is repeated until the desired level of accuracy is gained. The
final value for the chemical potential is the Fermi Energy Level of the system.

The band structure energy of the system is calculated as:

NCell
Ey = ) ebstot, (IV.9)

a=l1
where, ebstot, is the contribution of the subsystem to the band structure

energy of the system:

4N AN
ebstot, = Y [( > 2xdensitya(i, j) * ’H(i,j)) + density,(i. 1) * ’H(z’,i)}
j

j=1 j=i+1
(IV.10)
where,
4N [4N N
density,(k,j) = }:[(ZZH (5,4) * H(k, %) *O‘) :
j=1 \k=ji=1
W W ‘
> > 0.5%H(j,5) = H(k,5i) * O* |] (IV.11)
k=4N+1 i=1

and (i, j) is the ji* element of the Hamiltonian matrix of the subsystem.
The next step is to find the forces that each atom experiences arising from
the electronic structure, i.e. in the x-direction;
NCell N
fzj=1...n = Z Zf:: (N'12)
a=1 i=l1
where;
NN 4
=Y Y Z density,(4(: — 1) + im,4(j — 1) +Jm) * Force(im, jm)

J=1 im=1 jm=1

(IV.13)
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where Force(im, jm) has the same form as in Eqn. II1.13. Total energy of the

system has the form,

Etot = Eb3 + Erep (IV-14)

where E,., has the same form as in Eqn. III.14. The energetics and forces
are now calculated and then molecular dynamics scheme is applied and this

procedure is continued until structural stability is sustained.

IV.1.1 The Periodic Boundary Condition (PBC) and the Effect of
the Buffer Size on O(N) TBMD, Carbon Nanotube Simula-

tion

An important parameter in the simulation is the cuboidal box size. We took
the cube size equal to the distance between the layers in the tube so that
each cube has equal amount of atoms. This also provides the same number of
interacting neighbor atoms (buffer) for each subsystem. The PBC is applied in
the z—direction only. Hence, the system behaves as infinitely long tube. In the
Fig. IV.1, it is seen that the difference with O(N?) total energy result for 18
layers and 24 layers are exactly same, since PBC works well. We have chosen
20 layers for both 10x10 and 17x0 tube structures for the rest of our study.
Buffer atoms are selected using a distance criterion, Ry. That is, if an atom
is within a distance R, of a subsystem, this atom will be included as buffer
atom for that subsystem. The diagonalization for a subsystem is performed
with atomic basis functions of the subsystem atoms and buffer atoms, and
the computational effort scales as N3, where N, is the number of basis func-
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tions in the o subsystem and its buffer region. After diagonalization resulting
eigenvalues and eigenvectors give us necessary information for local Density of
States (IDOS) and for force expressions to evaluate the next MD iteration.

In Fig. IV.1, the effect of the buffer size on the total energy within the given
constraints such as boxsize, electronic temperature is given. It is seen that the
effect of the buffer size on the O(N) TBMD is very important. For the 10x10
CNT difference with O(N3) TBMD result (error) decreases when the buffer
size is increased; then reaches to desired accuracy and fluctuates around this
value. Buffer size is important in evaluating the simulation time, energy and
force values. Such as, if the buffer size is chosen a higher value than necessary,
it will affect the simulation time in cubic manner since the Hamiltonian matrix
is constructed with respect to the number of interacting atoms in the buffer
region. On the other hand, if this parameter is chosen a low value then it will
not be able to to produce the correct energy and force values. In Figs. IV.3
and IV .4, the effect of the buffer size on the O(N) TBMD for the 10x10 and
17x0 tube structures together with the effect of the electronic temperature are

also given.
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IV.1.2 The Effect of the Electronic Temperature (kgT) on O(N)

TBMD

The effect of the electronic temperature on the total energy is investigated.
The energetics for the pristine 10x10 tube with different electronic temper-
ature values kgT = 0.025 eV (=300 K) and kgT = 0.05 eV (=600 K) are
studied. Results are given in the Figure IV.2. The upper graph is for the room
temperature and the lower is the twice of the room temperature. Having an
equal average energy value both graphs show similar behavior. They fluctuate
around almost the same value. This is reasonable because they both simulate
the same system with different electronic temperatures. The pattern at the
above graph is more dense than the lower one. This is because of the hotter
electrons in the system.

In the Figs. IV.3 and IV.4, the effect of the buffer size together with
the varying electronic temperatures (from kg7 = 0.000001 eV (=0.012 K) to
kgT = 0.1 eV (=1200 K)) on the O(N) TBMD total energy value for the
10x10 and 17x0 tube structures are given. It is seen that when the buffer size
value is small, electronic temperature has a slight effect on the energy value.

These values are the static results without performing simulation. The ef-
fect of the electronic temperature may be impressive during the simulation,
when the forces between the atoms become dynamic. Therefore during simu-

lations, it is safe to choose the electronic temperature as room temperature.
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IV.1.3 The Effect of the Electronic Temperature (kg7) on Fermi-

Dirac Distribution and on Local Density of States

The effect of the electronic temperature on Fermi-Dirac Distribution and on
Local Density of States (1IDOS)is investigated. The Fermi-Dirac Distribution
of the pristine 10x10 and 17x0 tubes with different electronic temperature val-
ues kpT = 0.01 eV (=120 K) and kT = 0.1 eV (1200 K) are studied.
Results are given in the Figs. IV.5 and IV.6. The upper graphs in the figures
are at 120 K while the lower ones are at 1200 K. It is observed that as the
electronic temperature is increased the graphs are broadening. Since less elec-
tronic state is populated at the low electronic temperature condition there is
no widening for the upper graphs as expected.
The density of states is obtained from the general formula,

dN(E) _ N(E+€) = N(£)

9(6) = =5 6 (IV.13)
where N is the number of electrons in the system and equal to,
NCell 4N 9 4N \
N(E) = * H(j,1 V.16
(E) Z g::l 1+ f((E - £)/kgT) ;I (7,9)] ( )

In the Eq. IV.15, the statement is that; if there is a change in the slope this
gives us the information about the existence of populated electronic state. The
criteria is the change in the slope for the Figs. IV.7 - IV.10.

In the Figs. IV.7 - IV.10, the IDOS graphs for the pristine 10x10 and 17x0
tubes for different electronic temperature values kgT = 0.1 eV (=1200 K),
kgT = 0.05 eV (=600 K) and kgT = 0.05 eV (=600 K), kgT = 0.025 eV
(~300 K); respectively are given. In the Figs. IV.7 and IV.9, only a selected
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range for IDOS are given to better understanding of the behavior of electronic
states near the Fermi-Energy level for the tube structures 10x10 and 17x0,
respectively. The other figures, namely IV.8 and IV.10, give the same infor-
mation but in the full range. It is seen that when the electronic temperature
is increased the graphs begin to be smoother since higher amount of electronic
states are populated. But, the peaks at and around the Fermi-Energy level
are at the same positions for different electronic temperatures as expected.
The Fermi-Energy level values are very similar (around 3.7 eV) for both
" tube structures. Although they have different chirality this is expected because
two tubes have the same radii. The formula for the DOS gives the electronic
state population for the different energy values. It is found that the 10x10
tube has metallic behavior since it has states around Fermi-Energy level and
a wide band gap but on the other hand the 17x0 tube has semiconducting
behavior since it has no states around Fermi-Energy level and small band gap

as expected.
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IV.1.4 Discussion

In this study, the details of O(N) TBMD algorithm is given. It is described
that how a system is divided into many subsystems and how their contributions
give overall system properties (such as charge density, band structure energy)
by using nearsightness principle. This principle uses the approximation that
only the local environment contributes to the bonding of each atom. This gives
us the opportunity for linear scaling. The main problem in the traditional TB
is the increasing system size. When the system size increases (N), the time to
diagonalize the constructed Hamiltonian matrix becomes in the order of V3.
The O(N) algorithms overcome this bottleneck and the behavior has a linear
scaling. In the Fig. IV.13, it is seen that our O(N) algorithm scales linearly
for increasing system size.

The effect of some O(N)parameters is studied. The first one is the buffer
size. Each subsystem has its own buffer region so that its own small sized
Hamiltonian matrix. After diagonalizing this Hamiltonian matrix, the eigen-
values and eigenvectors are obtained. The next step is to obtain all these
informations for all subsystems and then calculate the overall system prop-
erty; chemical potential. This parameter gives us the value for Fermi-Energy
Level. Then, the forces that each atom experiences and the contribution of
each subsystem to band structure energy of the system are calculated. All
these procedures are repeated through each MD time step.

The results obtained with O(N) algorithm must be consistent with O(V3)
results for the same system. To ensure this, the value for the buffer size
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parameter must be investigated. The results for this parameter are given in
the Figs. IV.3 and IV.4. In Fig. IV.3, the buffer size for 10x10 tube is studied
and it is feasible to choose it as 4.9 A. Also, the value of the parameter for the
17x10 tube can be taken as 5.7 A (see Fig. IV.4). It is important to keep the
buffer size parameter as small as possible and at the same time, it must be
able to produce the same values with the O(/N?) TBMD results. The buffer
size for 17x0 tube converges to desired accuracy much later than 10x10 tube.

This results in much longer simulation time.

We have applied PBC in z-direction only and checked it in 10x10 tube
structure with different sizes. The result can be seen in the Fig. IV.1. It is

seen that PBC condition works well.

Another important parameter in the simulation is the electronic tempera-
ture. We have investigated the effect of the electronic temperature on the MD
simulation and obtained the results given in Fig. IV.2. It is observed that
higher electronic temperature does not affect the average value of the total en-
ergy but it may be effective for the extreme cases such as strain and vacancy.
Therefore, we have chosen the electronic temperature as room temperature

value for the rest of the study.

It is also studied that the effect of the electronic temperature on the buffer
size value is not considerable after the desired accuracy on the buffer size is
reached. We have also calculated the band gap values for 10x10 and 17x0 tubes
as 2.01 eV and 0.53 eV; respectively. The proposed model values are calculated
by the formulas 2y@a.-./d and 6va.—./d (where 7o = 2.5 — 2.7 €V, Gc—c =

36



0.142 nm, and d for diameter in (nm)) for semiconducting and metallic tubes,
respectively [20],[34]-[37]. The band gap values for the 10x10 and 17x0 Carbon
Nanotubes with this model are 1.62-1.75 eV and 0.54-0.58; respectively. Our
O(N) TBMD algorithm gives good energy band gap result for the 17x0 tube
but not so good for 10x10 tube compared to the proposed models mentioned
above. On the other hand, the behaviors of the local density of states graphs
are (see Figs. IV.7-1V.10) as expected. For the 10x10 tube (metallic behavior),
it is wide and there are states populated around Fermi-Energy level and for
the 17x0 tube (semiconducting behavior), it is narrow and no states around
Fermi-Energy level as expected.

As a result, we conclude that the methodology is able to produce the phys-
ical properties such as Fermj-Dira;: Distribution, local Density of States and
energetics for the Carbon Nanotubes. The next step is to investigate the

structural stability under extreme conditions such as uniaxial strain.
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IV.2 Parallel O(N) TBMD

We have compared our O(N) TBMD simulation results with O(N?) TBMD
algorithm. Then parallelization technique is applied to O(N) TBMD program.
In this work we do not discuss O(N) methods, rather we focus on the algo-
rithm of the sequential O(N) code and parallel version of it. We made use
of the TB model by C. H. Xu et al. [22]. sp® basis set per C atom is used
with cutoff distance for orbital overlap and U,., at 2.1 A to consider only first
nearest neighbor interactions. When using a cutoff for non-bonding forces, it
is necessary to construct a list of all pairs of atoms that are within the cutoff
distance. This pair list is normally updated after a fixed number of MD steps,
typically 10. In particular, the search for interacting pairs (by calculating the
distance of separation and comparing these with cutoff radius) is quite expen-
sive, being of the order N2, if no special algorithms are applied. To speed—up
this process, either the linked—cells (LC) algorithm [16], or a Verlet list [17]
(or both) can be used. To build-up the LC list for one type of non-bonded
interaction, requires each region to be divided into cells. We have used LC list
with equally-sized cells of cuboidal shape and Verlet list together. The linked
lists of all the sites within each cell are built, and only interacting pairs within
the neighboring cells need to be considered in computing pair interactions.
Using this method, the number of extra pairs tested is reduced considerably.
Since divide and conquer algorithm [31] for tight binding scheme is used, it is
inherently possible to make use of LC technique and apply parallelization al-
gorithm. Velocity Verlet algorithm is used for the time evolution of the system
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with a time‘ step equal to 1 fs.

The program was written by using Fortran 77. Functions and subroutines
are grouped into modules. Dynamic memory allocation is used for all data
structures, there are no compile-time limits for the number of atoms, etc.
Benchmark tests has been performed on 8 PCs (Celeron 500 MHz, 128 Mb
RAM, 128 Kb cache) running under Linux (Slackware 2.2.13). As a compiler
option -O2 optimization level is used. Lapack (level 3) is used for the diago-
nalization of the Hamiltonian matrix. The flowchart is given in the appendix

and the time analysis of the sequential code is given at the results section.

IV.2.1 Algorithm

The overwhelming part of all computation time in an O(N) TBMD simulation
is spent for calculation of band structure energy and forces. Our approach
does not distribute all parts of TBMD simulation to avoid higher cost of the
internode communication time. Instead of that only calculation of band struc-
ture energy and forces are distributed to processors, collecting the resulting
forces, and doing the rest of the calculation (non-bonding potentials, time in-
tegration, velocity rescaling, etc.) on only one processor. This significantly
reduces the communication requirements and enables much better scaling to
large number of processors. It is the simplest to program as the parallel code
loop structures remain essentially the same as the serial code with most of the
subroutines remaining almost identical. Master-slave technology is used to
parallelize the sequential code. It is a hybrid algorithm of replicated data and
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domain decomposition algorithms [38'-/41]. PVM was used for communication
between tasks of parallel program. The PVM standard has been widely ac-
cepted, is available for all important parallel machines, and makes it possible
to write portable parallel programs that run efficiently on both shared memory
and distributed memory machines.

In all cases the subroutine DSYEV'D was adopted to fully diagonalize the
Hamiltonian matrix. DSYEVD was selected for a two—fold reason: it is a
diagonalization routine where eigenvectors are calculated by using a divide and
conquer algorithm, and it allows for the calculation of the full eigen-spectrum
and therefore simulates a real life application of TBMD where the calculation
of physical observables depending on electrpn energies and/or wavefunctions
are actually needed. The flowchart is given in the appendix and the time

analysis of the parallel code is given at the results section.

IV.2.2 Discussion

In this study, the O(N) technique is applied to sequential O(/N3) TBMD sim-
ulation code and then parallelization is applied. Our system is a distributed
memory system and contains 8 computer having Celeron processors with fast
ethernet (100 Mbit/sec) using bus topology and PVM (Parallel Virtual Ma-
chine) library. The parallel code is benchmarked and tested on a physical
system, which is 10x10 structured CNT. The number of atoms are related
to the increasing layers of 10x10 structured CNT, 4200 atom corresponds to
210 layered CNT (A). All the simulations presented herein were carried out
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in the canonical (N,V,T) ensemble. The Newton equations of motion were
integrated using the Velocity Verlet algorithm with a time step equal to 1
fs. To avoid inaccurate integration of the Newton equations of motion, the
velocities of the constituent atoms weré occasionally rescaled to maintain the
temperature of the system at the target value. Periodic boundary condition is
applied in uniaxial direction. The results for sequential and parallel runs are
compared and assured that they are the same both in numerical accuracy and
in physical aspects. In Figs. IV.11 and IV.12, some physical properties and en-
efgetics values for the simulation results on (10x10) tube structure at 300 K are
given given. In Figure IV.11, simulation results of radial distribution function,
particle-particle correlation function, bond angle and bond length distribution
functions for (10‘x 10) CNT are given. The radial distribution function defined
as the average density of atoms at a given distance from any other reference
atom gives the information about the structure of 10x10 tube. In the figure,
we observe the first peak at the nearest neighbor distance of a... = 1.44 A.
The second peak is at the second nearest neighbor distance of 2.49 A and the
third peak at 2a... = 1.44 A. These values are all in accord with the observed
properties of 10x10 tube [42]. Particle-particle correlation function also gives
the same information as Radial Distribution function. Bond-angle distribu-
tion function peaks around 120 degree as expected. Bond-length distribution
function peaks around 1.4 A which is the a,. distance for the 10x10 tube. In
Figure IV.12, we give the coordination number, repulsive energy, band struc-

ture energy and total energy for our CNT. The coordination number peaks
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around 3 as expected. Total energy reaches equilibrium around -8.30 eV in
250 fs. It fluctuates araound this value for another 250 fs. This gives us enough
information about the average value of the total energy for 10x10 CNT. The
only reported total energy value we could have found in literature is -8.01 eV
[43] and in obtaining this value periodic boundary condition is not taken into

consideration.

Sequential O(N3) TBMD scales as cubic power to number of atoms and
limited to system size around 600 atoms, however sequential O(N) TBMD
enables us to study system sizes around 900 atoms and also linearly scales as
can be seen in Figure IV.13. Our test case 10x10 tube structure consists of
400 atoms. Using O(.V3) matrix diagonalization run time per MD Step for
this simulation is 573 sec. O(N) algorithm reduces the run time per MD Step

to 40 sec. More on the system size studies can be seen in Figs. IV.14 to IV.18.

Run time for parallel O(N) TBMD code also scales as linearly with the
increasing number of atoms up to available system sources. It scales linearly
with increasing number of atoms and fixed number of processors, and then the
slope changes. After that point is reached, it is necessary to add new host
to decrease the run time, to have a feasible and efficient system. Another
aspect is increasing the number of hosts in the cluster will not always decrease
the run time for the same number of atoms. Because the communication
between the nodes overheads and increase the run time. These two behavior
are seen in Figures. IV.14 and IV.15. The same trend is also observed in the
communication time with increasing number of atoms, as can be seen in Figure
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IV.16.

Increasing number of processors in the cluster decreases the run time. Ex-
ception to this is observed in Figure IV.15 for 200 atoms case. Here the
communication time overrides the small calculation time. In Figure IV.17,
communication time per MD Step (in units of sec) is analyzed with respect to
number of processors. The communication time for fixed number of atom and
increasing number of processors shows O(NJ,,.) behavior. In Figure IV.18, the
percentage contribution of communication time to Run Time is analyzed for
varying sizes of processors Since Run Time per MD Step composes of commu-
nication and calculation parts. We see that the contribution of communication
time to run time increases with the addition of new hosts to cluster as expected.

Communication time becomes dominant thus decreasing the calculation time

considerably.

Our result for Speed Up and Efficiency are given in Tables IV.2.2 and
IV.2.2. The highest Speed up and Efficiency values are 3.71 and 0.98, respec-
tively. Speed Up is defined as S, = T/T, where T; is the time for sequential
runs and 7}, is the time for runs using p number of processors. Efficiency
is obtained using E, = Sp/p. The highest value for speed up is 3.71. This
is obtained in the simulation of 20 layer (400 atoms) CNT using 5 proces-
sors. Highest value for efficiency is 0.98. It is obtained in the simulation of
20 layer and 26 layer (520 atoms) using 2 processors CNT. In Table IV.2.2,
the comparison for the Lapack routines; (to diagonalize Hamiltonian Matrix),
dsyev (DSYEV computes all eigenvalues and, optionally, eigenvectors of a real
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Table IV.1: Speed Up values are listed for varying system size and processor
number (np) for (10x10) CNT structure.

Number of Atom O(N) O(N) O(N) O(N) O(N) O(N) O(N)

10x10 Tube np=2 np=3 np=4 np=5 np=6 np=7 np=8
200 1.85 2.58 3.46 353 241 222 0.78
360 1.92 270 329 288 156 1.19 1.28
400 1.96 278 358 371 218 124 1.05
520 1.95 276 3.53 327 212 147 121
600 1.80 274 355 328 207 160 1.50
720 1.86 2.76 356 354 194 173 1.56
800 1.83 263 3.57 302 265 173 148

symmetric matrix) and dsyevd (DSYEVD computes all eigenvalues and, op-
tionally, eigenvectors of a real symmetric matrix. If eigenvectors are desired,
it uses a divide and conquer algorithm). It is seen that for the standard ma-
trix diagonalization (O(N3) TBMD) dsyevd routine decreases the run time
but uses higher amount of RAM source. On the other hand for O(N) TBMD
simulation, Dsyevd and Dsyev run time values are similar to each other. This
is true even when the system size increases. Since the interactions are local

this is an expected behavior.

Our results show that parallelization technique is beneficial because of the
nature of the O(N) algorithm. In present situation, parallelization together
with O(N) algorithm proves to be very effective and favorable.
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Table IV.2: Efficiency with respect to for varying system size and processor
number (np)

Number of Atom O(N) O(N) O(N) O(N) O(N) O(N) O(N)

10x10 Tube np=2 np=3 np=4 np=3 np=6 np=7 np=8
200 092 08 08 071 040 032 0.10
360 096 090 082 058 0.26 017 0.16
400 098 093 08 074 036 018 0.13
520 098 092 08 065 035 021 0.15
600 094 091 08 066 034 023 0.19
720 093 092 08 071 032 025 0.19
800 091 088 089 060 044 025 0.18

Table IV.3: Comparison of Dsyevd and Dsyev Lapack routines on the cases;
total run time for O(N3) TBMD and diagonalization time O(N) TBMD per
MD Step (in sec).

Number O(N3) Dsyevd O(N°) Dsyev. O(N) Dsyevd O(N) Dsyev

of Atom Sequential Sequential Sequential Sequential
10x10 Tube  Run Time Run Time  Diagonalizing Diagonalizing
200 73.4 84.9 10.8 9.46
360 461.9 511.6 20.78 17.90
400 573.2 672.7 22.32 22.12
520 1214.7 1516.7 30.88 28.18
600 2303.5 4432.8 35.54 32.70
720 - - 37.88 34.30
800 - - 42.68 39.18
920 - - - 54.94 51.12
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Figure IV.11: Physical Properties; Radial Distribution Function, Pair Correla-
tion Function, Bond-Angle Distribution Function, Bond-Length Distribution
Function for the Tube Structure 10x10 and T= 300 K with the electronic
temperature 0.005 eV (MD Time Step = 1 fs); respectively.
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IV.3 Structural Stability and Energetics Under Uniax-
ial Strain

The structural stability, energetics and tensile mechanical properties of 10x10
carbon nanotube are investigated. The uniaxial strain is applied and studied
using O(N) TBMD method. Similar to that of graphite, carbon nanotube has
high flexibility, strength and stiffness. Although a direct measurement of its
mechanical properties is difficult because of its nanosize, along with the de-
velopments in instrumentation, production, processing and manipulation tech-
niques, the measurements for the elastic moduli of carbon nanotube became
possible. On the other hand, this extreme small size is very suitable for per-
forming atomistic simulations. Both the experimental [44]-60] and theoretical
[61]-[85] studies have shown that SWCNTs, and SWCNT ropes are promising
low—weight high-strength fibers for use as reinforcing element in composite
materials. It is predicted that Young’s Modulus of SWNT's can be up to order
of 1 TPa. This is comparable to that of diamond. It is also predicted that

SWCNTSs can sustain large strain in axijal direction [81].

IV.3.1 Method

In this study, 10x10 carbon nanotube (consisting of 400 atoms with 20 layers)
is simulated under tensile loading using our developed O(N) parallel TBMD
program. Two steps are followed; firstly, the tube is annealed at simulation
temperature for 3000 MD Steps (time step used in the simulation is 1 fs).
The variation of total energy, and some physical properties such as radial
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distribution function, atomic coordination number, bond-angle distribution
function, and bond-length distribution function are given in the Figs IV.11
and IV.12. The geometrical structure of pristine carbon nanotube at the end
of the simulation is given in the Fig.IV.19. The next step is to apply strain on
the tube. Several groups have proposed different procedures; such as shifting
the end atoms along the axis (i.e. z-direction) by small steps [72], reducing
radial dimension while the nanotube is axially elongated [73], pulling in axial
direction with a strain rate and following each step of pulling some additional
MD steps were used to relax the distorted structure [75] and using hydrostatic
pressure exerted on the walls of SWCNT by the means of encapsulating H,
molecules inside the tube and the the wall of the tube [74]. In our study.
the tensile strain is applied by the reduction or enlargement of the radial
dimension while the nanotube is axially elongated or contracted. Throughout
this procedure volume of the tube is kept constant. Zhou et al. [73], has
investigated the mechanical properties of SWCNT with the same procedure
using a first-principle cluster method within the framework of local density
approximation. We further simulated the deformed tube structure (under
uniaxial strain) for another 2000 MD steps (time step is chosen again as 1 fs) to
understand the strain mechanism. Strain is obtained from (e = (L—zolﬂ), where
Ly and L are the tube lengths before and after the strain, respectively). Several
strain rates are applied to pristine tube to study the strain rate. Simulations

are performed at room temperature and periodic boundary condition is applied

along the axial direction.
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IV.3.2 Results

Total energy of curve of the carbon nanotube as a function of strain along the
tubular axis is given in Figure IV.20. We observe an asymmetric pattern for
the elongation and compression cases. The tube has not a high strength for
the compression as much as elongation. This might be due to the dominant
behavior of repulsive forces in the system under uniaxial strain. This figure
indicates that the remarkable elastic properties under large strain are caused
by nonparabolic strain energy. It is seen that the carbon nanotube is able to
carry the strain up 122% of pristine tube length in elongation and up to 93%
of pristine tube length for the compression.

The variation of total energy of the deformed system during MD simulation
for the strains 0.22 elongation and 0.07 compression are given in the Figure
IV.21. In the graphs, first 3000 MD steps is for the equilibration of the carbon
nanotube and the next 2000 MD steps shows the variation of the total energy
of the tube during the simulation under the applied uniaxial strain. It is seen
that the tube under these strain rates is able to sustain its structural stability.
The geometrical structures for these strain rates at the end of the simulations
are given in the Figs. IV.22 and IV.23 for the elongation and contraction,
respectively. Bond angles and bond lengths are the two important factors
that control the deformation. The effect of the strain on the bonds is such
that it alters the angles between two neighbor carbon bonds and changes the
lengths of the C-C bonds. For high strain rates the changes in the the radial
distribution function, bond-length distribution and bond-angle distribution
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are given in Figs. IV.24-1V.26. It is seen in the graphs that the two—third of
the bond lengths and one-third of the bond angles increases (decreases) when
tube is elongated (contracted) as expected. .

Increasing the strain beyond these points results in the disintegrations in
the carbon nanotube. The geometrical structures, and the behavior of the
total energy for the strains 0.23 (elongation) and 0.08 (compression) are given
at the Figs. IV.27 and IV.28. Figures show that the elongated tube dissociates
by starting from the middle like a zipper while the compressed tube starts to
dissociate from the ends of the tube. Each peaks in the Figs. IV.29a and
IV.29b represent disintegrations of the atoms from the tube.

The elastic constants are calculated from the second derivative of the energy
density with respect to various strain. To obtain the stress-strain curve, the
cross—section upon which the resulting forces act is needed to be estimated.
The cross—sectional area of a nanotube is ambiguous in definition [42). A
circular cylindrical shell is considered around the surface of the nanotube.

Then the surface area of the cross—section, s, is defined as
s=27R6R (IV.17)

where R stands for the radius of the SWNT, 4R for the wall-thickness. It
should be noted that different wall-thickness values were used by several groups
[67), [65], [68], [66]. In Ref. [67], 6R=3.4 A (measured interwall distance in
the Multi Wall Nano Tube) was used, while in Ref. [68] R=1.7 A (taken as
the van der Waals radius for Carbon) was accepted , it is also accepted as 0.66
A (in the 7 orbital extension) in Ref. [65] and as the whole cross-sectional
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area of the tube in the Ref. [66]. We defined the thickness of SWNT shell as
follow in our research; 6R = 3.4 A. The stress-strain curve obtained from this
study is given in the Figure IV.30a. It is seen in the figure that the elastic limit
is at the strain value of 0.09. Beyond the elastic limit, the stress—strain curve
departs from a straight line. Hence, its shape is permanently changed. The
breaking point is observed at the strain rate of 0.23. The Young’s modulus is
determined as the slope of the stress-strain curve. Our calculated value of the
Young’s modulus of the 10x10 Carbon nanotube is 0.311 TPa.

Theoretical tensile strength is defined as the maximum stress, which may

be applied to the material without perturbing its stability. It can be given as

_ 1 aEtot
Tth = — ( 5 )E ] (IV.18)

=£3

where € is the stress, ¢; is the maximum stress in the system, and s is the
surface area of cross-section. Our calculated value is 4.92 GPa, which is larger
than that of Carbon fibers (2.6 GPa) [86], but less than the in-plane tensile
strength of graphite (20 GPa) [87].

Another mechanical property of interest is the Poisson ratio, v, which is

defined by

1R—R,,
= (2t 1
v (e 7, ) (IV.19)

where R is the radius of the tube at the strain ¢, and R, is the equilibrium
(zero strain) tube radius. The Poisson ratio measures how much the tube
contracts (expands) radially when subject to a positive (negative) axis strain
€. The corresponding value found in this study is 0.287.
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Another interesting phenomenon we observed in simulation is the vibration
of SWNT in radial direction. in Figure IV.30b, the average radius of the
pristine 10x10 SWNT as a function of MD steps is given. The frequency of
vibration can be evaluated from the figure and has the value of 4.71 x 10° GHz.
The variation of radius for the strains 0.22 and -0.07 is also given in the Figs.
IV.31a and IV.31b. It is found that the strain is effective on the vibration
frequency. Increasing strain on the tube structure results in the decrease for
the frequency of vibration. It is ranged from 2.94 x 103 GHz to 4.41 x 10° GHz
with decrease by the increasing strain rate and has a mean value of 3.70 x 10°

GHz.

IV.3.3 Discussion

The elastic properties of 10x10 carbon nanotube under tensile loading is in-
vestigated by using O(N) Tight-Binding Molecular Dynamics method.The
Young’s modulus, tensile strength, Poisson ratio and frequency of vibration
are calculated and the values are 0.311 TPa, 4.92 GPa, 0.287 and 4.71z10?
GHz, respectively. Several groups are reported a wide range of values for the
corresponding properties by using several theoretical and experimental tech-
niques.

The Young’s modulus values given by different researchers range from 0.200
TPa to 5.5 TPa [74]. The reasons may be attributed for the variation are at

the followings:

o The different values are used for the wall-thickness [65}-[68].
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o Different procedures are applied to represent the strain [72]-[75].

e The curvature effect of nanotubes was neglected [67], or not [69]. In Ref.
[67], it is concluded that the elastic moduli of nanotubes, (SWNT and
MWNT) were insensitive to geometrical structure while it is suggested
in Ref. [69] that Young’s modulus slightly depend on the tube diameter.
On the other hand, the variation of Young’s modulus as a function of

tube radius is also reported [62, 66].

e Accuracy of methods; first—principle methods are more reliable [68]-[74]

with comparison to the empirical potentials [61 - [67].

e The strain rates that Young’s modulus was calculated are either different

[74] or not pointed out {67, 72].

o Difference in the tube lengths; although the Periodic Boundary Condition

is applied for the most cases, finite size effects might be still important.

Our result is in the range mentioned above. It emphasizes the high Young's
modulus and high strengths of Carbon nanotube. The strain at tensile failure
for SWNTs was predicted to be as high as 0.40 [65]. This is a tensile strength
of 400 GPa would be expected for SWNTs if one used the in—~plane Young’s
modulus of graphite, ~ 1 TPa [5]. However, such a high tensile strength has
not been justified by experiments. In this study, it is found that the elastic
limit is at the strain rate 0.09 beyond this point tube becomes permanently
changed. In Ref. [74], it is reported that when the strain larger than 0.10,
the tube becomes softened. They also estimated the strain at failure for the
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SWNT as 0.17 whereas it is found as 0.23 in this study. The procedure for
describing the strain in their work is to apply hydrostatic stress to the tube
wall. On the other hand, Tight-Binding electronic calculations reported by
Ozaki et al. [72] revealed large strain as 0.30.

The calculated and measured tensile strength also varies in value. In Ref.
[73], it is reported as 6.249 GPa by a result of a first—principle study while it
has the value of 62.9 GPa for the perfect 5x5 SWNT under hydrostatic pressure
(74]. An;Jther MD simulation by using the multi-body potential function of
embedded atom method reports the tensile strength as 9.6 GPa [61]. On the
other hand, it is reported as 3.6 GPa [44] and as ranged from 13 to 52 GPa
[49] in the experimental studies. The value found in this study is 4.92 GPa
and seems to comparable with the experimental and theoretical results.

The calculated Poisson ratio is 0.287 and in good agreement with the avail-
able reported values which are 0.278 [67], and 0.32 [73]. The evaluated fre-
quency of vibration for the pristine (10x10) Carbon nanotube is 4.71 x 10° GHz
which is very close to the value obtained from the experiment 4.94 x 10° GHz
[88] and almost same with the value reported in the MD simulation by using
a bond-order potential [75]. In Ref. [75], it is reported that the frequency of
vibration is insensitive to the strain rate and the frequency of vibration is iden-
tified as self-vibration. We have found that it is not constant and increasing

strain rate decreases the vibration frequency.
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Figure IV.19: The geometrical structure of 10x10 pristine Carbon nanotube
after simulation.
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Figure IV.22: The geometrical structure of 10x10 Carbon Nanotube with 0.22
strain (elongation )after simulation.
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Figure IV.23: The geometrical structure of 10x10 Carbon Nanotube with 0.07
strain (contraction )after simulation.
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Figure IV.27: The geometrical structure of 10x10 Carbon Nanotube with 0.23
strain (elongation )after simulation.
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Figure IV.28: The geometrical structure of 10x10 Carbon Nanotube with 0.08
strain (contraction )after simulation.
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CHAPTER V

CONCLUSION

Carbon is unique among the elements in its ability to create a wide-variety
of network-like structures termed fullerene. From the present research status
CNT materials have been expected to carry out the wide-spreading industrial
applications in the near future. With the development of new applications, two
main characteristics of the nanotubes are used. First, there are the electronic
properties. Being metallic or semi-conducting, depending on their structure,
nanotubes can be used in the development of quantum wires with interesting
electronic transport properties, giving rise to a whole new concept of nanode-
vices. Also mechanical devices are developed, using mostly chemically modi-
fied nanotubes. The mechanical and elastic properties are being used in the

development of novel materials.

The chirality of SWCNT is denoted by two numbers (n,m) which describe
how graphite sheets roll up to form CNTs. The SWCNT with n # 0 but m =0
is named zigzag CNT, n = m named armchair CNT, and the others are named
chiral CNT. The electronic properties of SWCNT are strongly dependent on its
chirality. The researches show that if n — m is a multiple of three, then CNTs
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present metallic conductivity, otherwise present semiconductor conductivity.

In the thesis, the mechanical properties of SWCNT are investigated us-
ing our developed O(N) parallel Tight-Binding (TB) Molecular Dynamics
(TBMD) method [89]. The TB theory has been established as a good com-
promise between ab initio simulations and model-potential ones, bridging the
gap between them, either as far as the overall numerical efficiency or as far
as accuracy are concerned. TBMD is a computational tool designed to run
finite-temperature MD simulations within the semi-empirical tight-binding
scheme. The electronic structure of the simulated system is calculated by a
TB Hamiltonian so that the quantum mechanical many-body nature of inter-

atomic forces is naturally taken into account.

The main problem in the traditional TB is the increasing system size.
When the system size increases (N), the time to diagonalize the constructed
Hamiltonian matrix becomes the order of V3. The O(N) algorithms overcome
this and the behavior has a linear scaling. The O(N) algorithm (by using Di-
vide and Conquer scheme) is applied for the Carbon Nanotube simulation and
details of O(N) TBMD algorithm is given. It is described that how a system is
divided into many subsystems and how their contributions give overall system
properties (such as charge density, band structure energy) by using nearsight-
ness principle. In the Fig. IV.13, it is seen that our O(N) algorithm scales
linearly for increasing system size. The results obtained with O(N) algorithm
must be consistent with O(N3) results for the same system. To ensure, the
value for the buffer size parameter must be investigated. The results for this
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parameter are given in the Figs. IV.3 and IV.4. It is important to keep the
buffer size parameter as small as possible and at the same time, it must be able
to produce the same values with the O(N3) TBMD results. The another pa-
rameter in the simulation is the electronic temperature. We have investigated
the effect of the electronic temperature on the MD simulation and obtained
results are given in Fig. IV.2. Qur O(N) TBMD algorithm gives good energy
band gap results for the 17x0 tube, but not so good for 10x10 tube with re-
spect to proposed models mentioned above. On the other hand, the behavior
of the local density of states graphs are (see Figs. IV.7-IV.10) as expected.
We have concluded that the methodology is able to produce the physical prop-
erties such as Fermi-Dirac Distribution, local Density of States and energetics

for the Carbon Nanotubes.

We have compared our O(N) TBMD simulation results with O(N?) TBMD
algorithm. Then parallelization technique is applied to O(N) TBMD program.
The parallel code is benchmarked and tested on a physical system, which is
10x10 structured CNT. The number of atoms are related to the increasing
layers of 10x10 structured CNT, 4200 atom corresponds to 210 layered CNT
(A). Results for sequential and parallel runs are compared and assured that
they are the same both in numerical accuracy and in physical aspects. Sequen-
tial O(N3) TBMD scales as cubic power to number of atoms and limited to
system size around 600 atoms, however sequential O(N) TBMD enables us to
study system sizes around 900 atoms and also linearly scales as can be seen in
Figure IV.13. Run time for parallel O(N) TBMD code also scales as linearly
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with the increasing number of atoms up to available system sources. Our re-
sult for Speed Up and Efficiency are given in Tables IV.2.2 and IV.2.2. The
highest Speed up and Efficiency values are 3.71 and 0.98, respectively. Our
results show that parallelization technique is beneficial because of the nature of
the O(N) algorithm. In present situation, parallelization together with O(N)

algorithm proves to be very effective and favorable.

The elastic properties of 10x10 carbon nanotube under tensile loading is
investigated by using O(N) Tight-Binding Molecular Dynamics method.The
Young’s modulus, tensile strength, Poisson ratio and frequency of vibrations
are calculated and the values are 0.311 TPa, 4.92 GPa, 0.287 and 4.71 X
10® GHZ, respectively. Our result is in the range reported in the literature.
Although it is not at the high order of 1 TPa it still emphasizes a high Young’s
modulus and high strengths of Carbon nanotube. It is found that the elastic
limit is at the strain rate 0.09 beyond this point tube becomes permanently
changed. In Ref. [74], it is reported that when the strain larger than 0.10,
the tube becomes softened. They also estimated the strain at failure for the
SWNT as 0.17 whereas it is found as 0.23 in this study. The value for tensile
strength found in this study is 4.92 GPa and seems to comparable with the

experimental and theoretical results.

The calculated Poisson ratio is 0.287 and in good agreement with the avail-
able reported values which are 0.278, and 0.32. The evaluated frequency of
vibration for the pristine (10x10) Carbon nanotube is 4.71 x 10®> GHz which
is very close to the value obtained from the experiment 4.94 x 10®* GHz and
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almost same with the value reported in the MD simulation by using a bond-
order potential. It is reported that the frequency of vibration is insensitive to
the strain rate and the frequency of vibration is identified as self-vibration.
We have found that it is not constant and increasing strain rate decreases the
vibration frequency.

An O(N) Tight-Binding Molecular Dynamics (TBMD) algorithm in simu-
lations of Single Wall Carbon Nanotubes (SWCNT) is developed. The algo-
rithm is able to produce O(N3) TBMD results in good accuracy level. The
problem of cubic scaling in O(N3) TBMD is overcomed. Parallelization of the
algorithm further speeds up the simulations. This also provides the increase
in the system size. The usage of these two techniques together in the program
enabled us to study very high system sizes with the available hardware. The
results are remarkable such that the investigation of the stability, energetics
and elastic properties of Carbon Nano Tubes became possible in PC structure
in reasonable wall time and sizes. The evaluated total energy, radial distri-
bution function, bond-length and bond-angle distribution functions, Fermi
energy, band gaps, the Young’s modulus, tensile strength, Poisson ratio and
frequency of vibrations values are all in good agreement with those obtained

from theory and experiment.
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APPENDIX B

MAXWELL-BOLTZMANN VELOCITY

DISTRIBUTION

B.1 The Distribution of Molecular Velocities

The first step is to calculate the partition function,

Z =Y gjewp(~£;/KT) (B.1)

where &; is the energy and g; is the degeneracy of each level.

'/V‘]_2h2v—2/3

€= : n? =n2 —nl+n’ (B.2)

8m

Total number of possible states in all energy levels up to and including the
energy &;,

Total number of possible states between £; and &; + A; (degeneracy of the
macrolevel),

AG; = Zn2An; " (B.4)
k) 2 ) 3

inserting the expressions for AG; and £;, we have

m 2 h2v-23 A
Z= zj:AG,-e:vp(—é',-/kT) = E;njwp(— T n2)An;
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h2y -3 271'ka ;
- . /2
=5y mempl= g dny = V( )

(B.5)
The partition function therefore depends both on the temperature T and the
volume V', which corresponds to the general extensive variable. The impor-
tance of the partition function Z is that in Maxwell-Boltzmann and classical
statistics, all the thermodynamic properties of a system can be expressed in
terms of In Z and its partial derivatives. According to Maxwell-Boltzmann
Distribution,

AN; = % AGjeap(~£;/kT) (B.6)
where IV is the total number of molecules with energies up to and including

the energy &;; AN is the average occupation number of the macrolevel and

n2h2V -3 1 n 4rm3V
5]' = JT' = §mv_,2-, AGJ = §H3ATLJ — AG-,; h— 2.31)
It follows from these equations that, in velocity space,
4N , m , mu?
- /2,2
AN, \/_(2kT) véezp(— —2kT)Av (B.7)

The quantity N, represents the average total number of molecules with all
speeds up to and including v, and AN, is the average number with speeds
between v and v and Av.

It is helpful to visualize the distribution in terms of ‘velocity space’. Imag-
ine that at some instant a vector v is attached to each molecule representing
its velocity in magnitude and direction, and that these vectors are then trans-
ferred to a common origin, resulting in a sort of spiny sea urchin. The velocity
of each molecule is represented by the point at the tip of the corresponding ve-
locity vector. Fig. B.1 shows one octant of this velocity space. Geometrically
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Figure B.1: Diagram of velocity space.

speaking, the quantity N, represents the average total number of representa-
tive points within a sphere pf radius v, andAN, the number within a spherical
shell of radius v and thickness AN,. The coefficient of AN, in Eq.(B.7),
equal to the ratio %l,depends only on the magnitude of v, or on the speed.
It is called the Maxwell-Boltzmann speed distribution function and is plotted

as a function of v on Fig. B.2.

If velocity space is subdivided into spherical shells of equal thickness, the
speed v, at which the distribution function is a maximum is the radius of that
spherical shell which includes the largest number of representative points. The
speed vy, is called the most probable speed. To find its value, we take the first
derivative of the distribution function with respect to v and set it equal to zero
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Figure B.2: Graph of Maxwell-Boltzmann speed distribution function.
dN,/dv = 0.

Um =4[~ (B.8)

The distribution function can now be expressed more compactly in terms

of vy,
v? :
AN, = \/_ =i ez:p(—;?;)Av (B.9)
AN, 4N v?
= ﬁv?nv ea:p(—v—?n—) (B.10)
Average or arithmetic mean speed is,
.1
v= N Z 'UAN;;
4 % v? 2 8T

I em————— = —=7 — B.l].
Teai fy eI = o = (B.11)

The root-mean-square speed is

e = Vi = (PO = (2 [ wteap(- 1))

3 3kT
In summary, we have
2kT 2.55kT 3kT
=4/ = =4[ — B.13
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Figure B.3: Most probable (vp), arithmetic mean (%), and the root-mean-
square (Uppms) speeds.

The three speeds are shown in Fig. B.3,

The relative magnitudes of the three, at a given temperature, are [90]

Un : U Upme = 1:1.128 : 1.224.

B.2 Algorithm for Maxwell Velocity Distribution

— Setting initial velocities via randomly distribution of velocities around

Um

— According to the Kinetic Theory,

1 - 3
el = 2
2mv 2kT

It is needed to find the most probable velocity vy,, so using the relations,

,0'2=."‘&Z
m
_ {2
Um = 3'Urms



So, the expression for the most probable velocity vp,

[

Um = =

— Then normalization of this vector by dividing /3, that is the assumption
of the radius of velocity space constituted by equal components in mag-
nitude, giving the radius of the spherical shell which includes the largest

number of representative points,
— Using a random number generator giving values (—1, 1),
Velocity Components = (Umean — Vmean * Random Number)
velocities (in all directions) distributed by using this procedure,
— Finding the averages values for each distributed velocity directions v, 5. &

— Dividing each components to radius vector which is, ((v;)? + (v,)2 —
(9,)%))'/?, then finding direction cosines which are useful for scaling dis-

tributed velocities with respect to the given temperature

— Calculating kinetic energy and temperature with respect to the calcu-
lated v, as,
1

Kinetic Energy = §M (gv,z,,)

— Calculating the scaling factor,

(Temperature given | Temperature calculated)/? = ScaleFactor
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— Redistributing the initial speeds with respect to scaling factor by multi-

plying each component by scale factor,

v; = (| ?]) * ScaleFactor, 1=1,2,3

— Subtracting from average values v; — 7; gives differences from averages,
these are new scales and adding to each component of each atom gives

new speeds of each atom in each direction,

— Finding the averages for each distributed velocity directions ¢, ¢y, vy as,
1 X
vi= za: vl
— Finding the radius vector by,
Um = ((@)2 + ('U_y)2 + ("72)2)1/2
~ Finding kinetic energy by,
" 1, 3,
Kinetic Energy = §M (Evm)

— Finding calculated temperature,

K Ecalc

TE e = —1
le %kB

Since it has the same value with the given temperature, the initial veloc-

ities have been distributed successfully for each atom in all directions.
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APPENDIX C

DETERMINATION OF AT

An equality for At can be found by using the equation;

z=(At)2xa = (At)? x F/m = (At)?> x E/(z * m) (C.1)

At = [z2+m/E]"? = ((10° A)?x(1 amu /1.66054027%")/(eV/1.6027'%))"/? = sec

(C.2)

sec = 9.822149929'3 x (A2 x amu/eV)'/? = 9.822149929'3 x reducedunit

reducedunit = 1.018050697 14 sec
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APPENDIX D

FLOWCHARTS OF THE PROGRAM

D.1 Sequential O(N) TBMD

-Initialization
7 -Creating Divide—and-Conquer Box
-Diagonalizing the Hamiltonian Matrix to Find Initial Electronic
Density of States (eDOS) with respect to O(N3) Scheme
-Divide and Conquer Scheme:
Computing Repulsive Forces and Energy, U,
From i=1 to Number of Cells
Computing O(N) Hamiltonian and diagonalization
Computing the band structure energy, Ey,
Calculating Chemical Potential for the Whole System
From i=1 to Number of Cells
Computing the Hellmann-Feynman Forces
-End of Divide and Conquer Scheme

-Computing Instantaneous Temperature, Kinetic Energy, Rescaling
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Atomic velocities to Keep Temperature Constant
-Compute Total Energy per Atom, Er = U,,, + Ejps + Ejin
-MD Loop, MD Time Step =1
Compute new positions 7;(n + 1)
Divide and Conquer Scheme
Compute new forces ?,(n +1) and accelerations @;(n + 1)
Compute new velocities 7;(n + 1)
Computing Instantaneous Temperature, Kinetic Energy
Rescaling Atomic velocities to Keep Temperature Constant
Computing Pair Correlation Function and Radial Distribution Function
Computing Bond Angle Distribution and Atomic Coordination Number
Computing Bond Length Distribution
Compute Total Energy, Er = Usep + Eps + Egin
Saving Intermediate Configuration
Drawing Atomic Structure (PovRay),
mds=mds+1
-End of MD Loop, (n =MD time step; i = 1,..., Number of Atoms)
~-Diagonalizing the Hamiltonian Matrix to Find Final Electronic

Density of States (eDOS) with respect to O(V3) Scheme’
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D.2 Parallel O(N) TBMD )

-Master Node, Sending all necessary information to slaves
-Slave Node
-Divide and Conquer Scheme
Computing Repulsive Forces and Energy, U,
From i=1 to (Number of Cells/Number of Processors)
Computing O(N) Hamiltonian and diagonalization
Internode communication; Computing E,,
Internode communication; Cal. Chemical Potential for the Whole System
From i=1 to (Number of Cells/Number of Processors)
Computing the Hellmann~Feynman Forces partially
Internode communication; Computing the Hellmann—Feynman Forces
End of Divide and Conquer Scheme
-Computing Instantaneous Temperature, Kinetic Energy, Rescaling
Atomic velocities to Keep Temperature Constant
-Compute Total Energy per Atom, Er = U,ep + Ei. + FEiin
-MD Loop, MD Time Step =1
Compute new positions 7;(n + 1)
Internode communication; Updating Positions in each node
Divide and Conquer Scheme
Compute new forces ?,-(n +1) and accelerations @;(n + 1)

Compute new velocities 7;(n + 1)
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Computing Instantaneous Temperature, Kinetic Energy

Rescaling Atomic velocities to Keep Temperature Constant

Computing Pair Correlation Function and Radial Distribution Function
Computing Bond Angle Distribution and Atomic Coordination Number
Computing Bond Length Distribution

Compute Total Energy, ET = Uep + Eys + Egin

Saving Intermediate Configuration

Drawing Atomic Structure (PovRay)

mds=mds+1

-End of MD Loop, (n =MD time step; i = 1,..., Number of Atoms)
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