
1
Getting Started with
Borland™
C++Builder™

Compiler

Objectives
• To be able to install and configure the Borland

C++Builder Compiler.
• To be able to use a text editor to create C/C++

programs.
• To be able to use the Borland C++Builder

Compiler to compile C/C++ source files.
• To be able to execute programs in MS-DOS.
• To be able to compile and execute programs with

multiple source files.

2 GETTING STARTED WITH BORLAND™ C++BUILDER™ COMPILER CHAPTER 1

©2000 Deitel & Associates, Inc. and
Prentice Hall. All rights reserved.

Outline
1.1 Introduction
1.2 Installation
1.3 Configuration
1.4 Creating a C/C++ Program
1.5 Compiling and Executing a C/C++ Program
1.6 Compiling Programs with Multiple Source Files

1.1 Introduction
Welcome to the Borland™ C++Builder™ Compiler. In this appendix you will learn how
to install the software included on the CD accompanying C How to Program: Third Edition
and how to create, compile and execute C and C++ programs using the C++ compiler from
Borland—C++Builder Compiler. When you complete this appendix, you will be able to
use the C++Builder Compiler to begin building applications.

The C++Builder Compiler compiles both C and C++ programs. C files are usually
have a .c file extension and C++ files typically have a .cpp file extension. The
C++Builder Compiler uses the file extension to determine whether the file it is compiling
is a C or C++ program. This appendix assumes that you are compiling a C program. How-
ever, the same steps apply to C++ programs.

Before proceeding with this appendix, you should be familiar with the topics in
Chapter 1, “Computing Concepts,” Chapter 2, “Introduction to C Programming,” and
Chapter 3, “Structured Programming Development,” of C How to Program: Third Edition.
A few of the examples in this chapter make reference to functions. For these examples, you
should be familiar with the material through Section 5.6 of Chapter 5, “Functions,” in C
How to Program: Third Edition. We hope you enjoy learning about the C++Builder Com-
piler.

1.2 Installation
The Borland C++Builder Compiler is included on the CD accompanying C How to Pro-
gram: Third Edition. To install this compiler perform the following steps:

1. Go to the CBuilder5\CommandLineTools\ directory on your CD drive
and double click FreeCommandLineTools.exe. [Note: The C++Builder
Compiler is also available for free download at www.borland.com/bcpp-
builder/freecompiler/.] This displays the Borland C++ Compiler 5.5
- Welcome dialog.

2. Click Next > to load the licensing information.

3. After you have read the licensing agreement, click I Agree to load the Installa-
tion Folder dialog.

4. Choose a directory into which you will install the compiler. It is recommended
that you use the default Installation Folder (Fig. 1.1), c:\Borland\bcc55
(the rest of this appendix assumes that the default installation folder is used).

5. Click Finish to complete the installation.

CHAPTER 1 GETTING STARTED WITH BORLAND™ C++BUILDER™ COMPILER 3

©2000 Deitel & Associates, Inc.—All rights reserved.
©2000 Prentice Hall—All rights reserved.

Fig. 1.1 Installation Folder dialog.

1.3 Configuration
The compiler must be configured after it is installed. To specify the location of the libraries
for both the compiler and the linker, two .cfg files must be created. These files
(bcc32.cfg and ilink32.cfg) are available for free download from the Deitel & As-
sociates, Inc. Web site.

Download and save these files into the directory c:\Borland\bcc55\Bin\
(assuming the default installation folder was used) to complete the configuration.

If you are unable to download the files, you need to create the .cfg files. To do so,
open a text editor such as Microsoft Notepad. To load Notepad click the Start button and
select Programs followed by Accessories and Notepad. Type into the editor the fol-
lowing lines:

-I"c:\Borland\bcc55\include"
-L"c:\Borland\bcc55\lib"

Then, click Save from the File menu and save the file in the c:\Bor-
land\bcc55\Bin\ directory and name it bcc32.cfg. Some text editors, including
Notepad, will automatically append a .txt extension to the end of all files they create. To
avoid this problem, place the file name in double quotes. The text in the File name box
should read "bcc32.cfg" (Fig. 1.2).

4 GETTING STARTED WITH BORLAND™ C++BUILDER™ COMPILER CHAPTER 1

©2000 Deitel & Associates, Inc. and
Prentice Hall. All rights reserved.

Fig. 1.2 Saving a file as a .cfg.

Open a new document in your text editor and type:

-L"c:\Borland\bcc55\lib"

Then save the file in the c:\Borland\bcc55\Bin\ directory and name it
ilink32.cfg using the same process outlined for the previous file.

The C++Builder Compiler is now configured. If you are still having problems with
installation or configuration read the file c:\Borland\bcc55\readme.txt or con-
sult www.borland.com\techpubs\bccpbuilder for more information.

1.4 Creating a C/C++ Program
Before creating a C/C++ program, create a directory to store your files. We created a direc-
tory named c:\cFiles, you of course can choose a different name.

You are now ready to create a program. Open a text editor and type in a program, such
as the following: [Note: We have included line numbers to improve readability of our
example, however they are not part of the program and should not be included.]

1 #include <stdio.h>

2

3 int main()

4 {

5 printf("Welcome to C!\n");

6 return 0;

7 }

6 GETTING STARTED WITH BORLAND™ C++BUILDER™ COMPILER CHAPTER 1

©2000 Deitel & Associates, Inc. and
Prentice Hall. All rights reserved.

(i.e., the grammatical rules) of C/C++. For example, if the quotes are eliminated from
around the string “Hello World!\n” (an illegal change) then upon compilation the
syntax errors shown in Fig. 1.5 are generated.

Fig. 1.5 Unsuccessful compilation.

An error message consists of an error code (i.e., E2451), the file in which the error
occurred (i.e., c:\cFiles\Welcome.c), the line number (i.e., 5) and a brief descrip-
tion of the error (i.e., Undefined symbol 'Hello' in function main()). If you
received a syntax error reopen your program in the text editor, go to the line specified by
the error message and correct it. Then, save and recompile the program.

If you received a message which was a warning rather than an error, then your compile
was successful but there may be a problem with your code which will prevent it from
working as you intended. It is recommended that you resolve all warnings before executing
your program.

C/C++ compilers often list more errors than actually occur in the program. For
example, a compiler may locate a syntax error in your program (e.g., a missing semicolon).
That error may cause the compiler to report other errors in the program when, in fact, there
may not be any other errors.

Testing and Debugging Tip 1.1

When a syntax error on a particular line is reported by the compiler, check that line for the
syntax error. If the error is not on that line, check preceding lines of code for the cause of the
syntax error. 1.1

Testing and Debugging Tip 1.2

After fixing one error, recompile your program. You may observe that the number of overall
errors perceived by the compiler is significantly reduced. 1.2

Once the program compiles without errors, you can execute it by typing the file name,
without a file extension. Type Welcome and your program will execute (Fig. 1.6). When-
ever you are finished with the C++Builder Compiler, type exit, to close the Command
Prompt.

To create additional C/C++ files, repeat the steps in the previous two sections.

CHAPTER 1 GETTING STARTED WITH BORLAND™ C++BUILDER™ COMPILER 7

©2000 Deitel & Associates, Inc.—All rights reserved.
©2000 Prentice Hall—All rights reserved.

Fig. 1.6 Execution of Welcome.c.

1.6 Compiling Programs with Multiple Source Files
More complex programs often consist of multiple C or C++ source files. We introduce this
concept, called multiple source files, in Chapter 14 of C How to Program: Third Edition.
This section explains how to compile a program with multiple source files using the Bor-
land C++Builder Compiler.

Compiling a program, which has two or more source files, requires listing them both
on the command line. Using the methods described in Section 1.4 of this appendix, create
the following two C program files named Welcome2.c and Hello.c, respectively.

1 /* Welcome2.c */

2

3 #include <stdio.h>

4

5 void myFunction(void);

6

7 int main()

8 {

9 printf("Welcome to C!\n");

10 myFunction();

11 return 0;

12 }

8 GETTING STARTED WITH BORLAND™ C++BUILDER™ COMPILER CHAPTER 1

©2000 Deitel & Associates, Inc. and
Prentice Hall. All rights reserved.

To compile the program, using these two source files, type:

bcc32 c:\cFiles\Welcome2.c c:\cFiles\Hello.c

The executable file which is created has the same name as the first file listed in com-
pilation. In our example, the executable is named Welcome2.exe. Therefore, to execute
your program (Fig. 1.7), type Welcome2.

Fig. 1.7 Compiling and executing a program with two source files.

1 /* Hello.c */

2

3 #include <stdio.h>

4

5 void myFunction(void)

6 {

7 printf("Hello from Hello.c!\n");

8 }

