1 Programming Shared Memory

1.1 Why Threads?

Threaded programming models offer significant advantages over message-
passing programming models along with some disadvantages as well.

e Software Portability; Threaded applications can be developed on
serial machines and run on parallel machines without any changes. This
ability to migrate programs between diverse architectural platforms is
a very significant advantage of threaded APIs.

e Latency Hiding; One of the major overheads in programs (both serial
and parallel) is the access latency for memory access, 1/0, and com-
munication. By allowing multiple threads to execute on the same pro-
cessor, threaded APIs enable this latency to be hidden. In effect, while
one thread is waiting for a communication operation, other threads can
utilize the CPU, thus masking associated overhead.

e Scheduling and Load Balancing; While writing shared address
space parallel programs, a programmer must express concurrency in a
way that minimizes overheads of remote interaction and idling. While
in many structured applications the task of allocating equal work to
processors is easily accomplished, in unstructured and dynamic appli-
cations (such as game playing and discrete optimization) this task is
more difficult. Threaded APIs allow the programmer to specify a large
number of concurrent tasks and support system-level dynamic map-
ping of tasks to processors with a view to minimizing idling overheads.
By providing this support at the system level, threaded APIs rid the
programmer of the burden of explicit scheduling and load balancing.

e Fase of Programming, Widespread Use Due to the mentioned advan-
tages, threaded programs are significantly easier to write than cor-
responding programs using message passing APIs. With widespread
acceptance of the POSIX thread API, development tools for POSIX
threads are more widely available and stable. These issues are impor-
tant from the program development and software engineering aspects.

A number of vendors provide vendor-specific thread APIs. The IEEE spec-
ifies a standard 1003.1c-1995, POSIX API. Also referred to as Pthreads,
POSIX has emerged as the standard threads API, supported by most ven-
dors. The concepts themselves are largely independent of the API and can be
used for programming with other thread APIs (NT threads, Solaris threads,
Java threads, etc.) as well.

1.2 Thread Basics: Creation and Termination
e A simple threaded program for computing the value of 7.

e The method we use here is based on generating random numbers in a
unit length square and counting the number of points that fall within
the largest circle inscribed in the square.

e Since the area of the circle (7r?) is equal to 7/4, and the area of the
square is 1 x 1, the fraction of random points that fall in the circle
should approach 7 /4.

e A simple threaded strategy for generating the value of 7 assigns a fixed
number of points to each thread. Each thread generates these random
points and keeps track of the number of points that land in the circle
locally.

e After all threads finish execution, their counts are combined to com-
pute the value of 7 (by calculating the fraction over all threads and
multiplying by 4).

e pthread_create

#include <pthread.h>
int
pthread_create (
pthread_t *thread_handle,
const pthread_attr_t *attribute,
void * (*\textit{thread_function}) (void *),
void *arg);

~NOoO Ok WwN e

— The pthread_create function creates a single thread that corre-
sponds to the invocation of the function thread_function (and any
other functions called by thread_function).

— On successful creation of a thread, a unique identifier is associ-
ated with the thread and assigned to the location pointed to by
thread_handle.

— The thread has the attributes described by the attribute argument.
When this argument is NULL, a thread with default attributes is
created.

— The arg field specifies a pointer to the argument to function thread_function.
This argument is typically used to pass the workspace and other
thread-specific data to a thread. In the compute_pi example, it is
used to pass an integer id that is used as a seed for randomization.

— The thread_handle variable is written before the function pthread_create
returns; and the new thread is ready for execution as soon as it is
created.

— If the thread is scheduled on the same processor, the new thread
may, in fact, preempt its creator. This is important to note be-
cause all thread initialization procedures must be completed be-
fore creating the thread. Otherwise, errors may result based on
thread scheduling. This is a very common class of errors caused by
race conditions for data access that shows itself in some execution
instances, but not in others.

— On successful creation of a thread, pthread_create returns 0;
else it returns an error code.

e For computing the value of T,

— First read in the desired number of threads, num_threads, and the
desired number of sample points, sample_points.

— These points are divided equally among the threads. The program
uses an array, hits, for assigning an integer id to each thread
(this id is used as a seed for randomizing the random number
generator).

— The same array is used to keep track of the number of hits (points
inside the circle) encountered by each thread upon return.

— The program creates num_threads threads, each invoking the func-
tion compute_pi, using the pthread_create function.

— Once the respective compute_pi threads have generated assigned
number of random points and computed their hit ratios, the results
must be combined to determine 7.

— The main program must wait for the threads to run to completion.
This is done using the function pthread_join which suspends ex-
ecution of the calling thread until the specified thread terminates.

1 int

2 pthread_join (

3 pthread_t thread,
4 void **ptr);

— A call to this function waits for the termination of the thread whose
id is given by thread.

© 00 NO Ok WN -

W W WWWWWWNDNDNNDNDNDNDNMNDNDNNNNNNRERPRRP, PP PP PR 2
~NOoO O WONEP, OO0 NP WNEFE, O OO NO O WN - O

— On a successful call to pthread_join, the value passed to pthread _exit
is returned in the location pointed to by ptr. On successful completion,
pthread_join returns 0, else it returns an error-code.

— Once all threads have joined, the value of 7 is computed by multiplying
the combined hit ratio by 4.0.

#include <pthread.h>
#include <stdlib.h>

#define MAX_THREADS 512
void *compute_pi (void *);

int total_hits, total_misses, hits[MAX_THREADS],
sample_points, sample_points_per_thread, num_threads;

main() {
int i;
pthread_t p_threads[MAX_THREADS];
pthread_attr_t attr;
double computed_pi;
double time_start, time_end;
struct timeval tv;
struct timezone tz;

pthread_attr_init (&attr);

pthread_attr_setscope (&attr,PTHREAD_SCOPE_SYSTEM);
printf ("Enter number of sample points: ");

scanf ("%d", &sample_points);

printf ("Enter number of threads: ");

scanf ("%d", &num_threads);

gettimeofday (&tv, &tz);
time_start = (double)tv.tv_sec +
(double)tv.tv_usec / 1000000.0;

total_hits = O;
sample_points_per_thread = sample_points / num_threads;
for (i=0; i< num_threads; i++) {
hits[i] = i;
pthread_create(&p_threads[i], &attr, compute_pi,
(void *) &hits[i]);
+

for (i=0; i< num_threads; i++) {

4

38 pthread_join(p_threads[i], NULL);

39 total_hits += hits[i];

40 }

41 computed_pi = 4.0*(double) total_hits /

42 ((double) (sample_points));

43 gettimeofday(&tv, &tz);

44 time_end = (double)tv.tv_sec +

45 (double)tv.tv_usec / 1000000.0;

46

a7 printf ("Computed PI = %1f\n", computed_pi);

48 printf (" %1f\n", time_end - time_start);

49 }

50

51 void *compute_pi (void *s) {

52 int seed, i, *hit_pointer;

53 double rand_no_x, rand_no_y;

54 int local_hits;

55

56 hit_pointer = (int *) s;

57 seed = *hit_pointer;

58 local_hits = 0;

59 for (i = 0; i < sample_points_per_thread; i++) {
60 rand_no_x =(double) (rand_r (&seed))/(double) ((2<<14)-1);
61 rand_no_y =(double) (rand_r(&seed))/(double) ((2<<14)-1);
62 if (((rand_no_x - 0.5) * (rand_no_x - 0.5) +
63 (rand_no_y - 0.5) * (rand_no_y - 0.5)) < 0.25)
64 local_hits ++;

65 seed *= i;

66 }

67 *hit_pointer = local_hits;

68 pthread_exit(0);

69 }

The use of the function rand_r (instead of superior random number
generators such as drand/8). The reason for this is that many functions
(including rand and drand48) are not reentrant. Reentrant functions
are those that can be safely called when another instance has been
suspended in the middle of its invocation.

It is easy to see why all thread functions must be reentrant because
a thread can be preempted in the middle of its execution. If another
thread starts executing the same function at this point, a non-reentrant
function might not work as desired.

1.3 Synchronization Primitives in Pthreads

While communication is implicit in shared-address-space programming, much
of the effort associated with writing correct threaded programs is spent
on synchronizing concurrent threads with respect to their data accesses or
scheduling.

1.3.1 Mutual Exclusion for Shared Variables

e Using pthread_create and pthread_join calls, we can create concur-
rent tasks. These tasks work together to manipulate data and accom-
plish a given task. When multiple threads attempt to manipulate the
same data item, the results can often be incoherent if proper care is
not taken to synchronize them.

e Consider the following code fragment being executed by multiple threads.
The variable my_cost is thread-local and best_cost is a global variable
shared by all threads.

1 /* each thread tries to update variable best_cost as follows */
2 if (my_cost < best_cost)
3 best_cost = my_cost;

e To understand the problem with shared data access, let us examine one
execution instance of the above code fragment.

— Assume that there are two threads, the initial value of best_cost
is 100, and the values of my_cost are 50 and 75 at threads t1 and
t2, respectively.

— If both threads execute the condition inside the if statement con-
currently, then both threads enter the then part of the statement.
Depending on which thread executes first, the value of best_cost
at the end could be either 50 or 75.

— There are two problems here: the first is the non-deterministic
nature of the result; second, and more importantly, the value 75
of best_cost is inconsistent in the sense that no serialization of the
two threads can possibly yield this result.

— This is an undesirable situation, sometimes also referred to as a
race condition (so called because the result of the computation
depends on the race between competing threads).

e The

aforementioned situation occurred because the test-and-update op-

eration illustrated above is an atomic operation; i.e., the operation
should not be broken into sub-operations.

e Furthermore, the code corresponds to a critical segment; i.e., a segment
that must be executed by only one thread at any time. Many state-
ments that seem atomic in higher level languages such as C may in fact
be non-atomic; for example, a statement of the form global.ount+ =5
may comprise several assembler instructions and therefore must be han-
dled carefully.

e Threaded APIs provide support for implementing critical sections and
atomic operations using mutex-locks (mutual exclusion locks).

e The

Mutex-locks have two states: locked and unlocked. At any point
of time, only one thread can lock a mutex lock.

A lock is an atomic operation generally associated with a piece of
code that manipulates shared data. To access the shared data, a
thread must first try to acquire a mutex-lock.

If the mutex-lock is already locked, the process trying to acquire
the lock is blocked. This is because a locked mutex-lock implies
that there is another thread currently in the critical section and
that no other thread must be allowed in.

When a thread leaves a critical section, it must unlock the mutex-
lock so that other threads can enter the critical section.

All mutex-locks must be initialized to the unlocked state at the
beginning of the program.

function pthread_mutex_lock can be used to attempt a lock on

a mutex-lock.

1
2
3

int
pthread_mutex_lock (
pthread_mutex_t *mutex_lock);

e A call to this function attempts a lock on the mutex-lock mutex_lock.
(The data type of a mutex_lock is predefined to be pthread_mutez_t.)

o [f the mutex-lock is already locked, the calling thread blocks; otherwise
the mutex-lock is locked and the calling thread returns. A successful
return from the function returns a value 0. Other values indicate error
conditions such as deadlocks.

e On leaving a critical section, a thread must unlock the mutex-lock
associated with the section. If it does not do so, no other thread will
be able to enter this section, typically resulting in a deadlock. The
Pthreads function pthread_mutex_unlock is used to unlock a mutex-
lock.

1 int
2 pthread_mutex_unlock (
3 pthread_mutex_t *mutex_lock);

e On calling this function, in the case of a normal mutex-lock, the lock
is relinquished and one of the blocked threads is scheduled to enter the
critical section.

e The specific thread is determined by the scheduling policy. There are
other types of locks (other than normal locks).

e [f a programmer attempts a pthread _mutex_unlock on a previously
unlocked mutex or one that is locked by another thread, the effect is
undefined.

e We need one more function before we can start using mutex-locks,
namely, a function to initialize a mutex-lock to its unlocked state. The
Pthreads function for this is pthread _mutex_init.

int
pthread_mutex_init (
pthread_mutex_t *mutex_lock,
const pthread_mutexattr_t *lock_attr);

W N -

This function initializes the mutex-lock mutex_lock to an unlocked state.
The attributes of the mutex-lock are specified by lock_attr. If this ar-
gument is set to NULL, the default mutex-lock attributes are used
(normal mutex-lock).

e Computing the minimum entry in a list of integers

— A threaded program to compute the minimum of a list of integers.
The list is partitioned equally among the threads.

x The size of each thread’s partition is stored in the variable
partial_list_size.

x The pointer to the start of each thread’s partial list is passed
to it as the pointer list_ptr.

1 #include <pthread.h>

2 void *find_min(void *list_ptr);

3 pthread_mutex_t minimum_value_lock;

4 int minimum_value, partial_list_size;

5

6 main() {

7 /* declare and initialize data structures and list */
8 minimum_value = MIN_INT;

9 pthread_init();

10 pthread_mutex_init (&minimum_value_lock, NULL);
11

12 /* initialize lists, list_ptr, and partial_list_size */
13 /* create and join threads here */

14 }

15

16 void *find_min(void *list_ptr) {

17 int *partial_list_pointer, my_min, i;

18 my_min = MIN_INT;

19 partial_list_pointer = (int *) list_ptr;

20 for (i = 0; i < partial_list_size; i++)

21 if (partial_list_pointer[i] < my_min)

22 my_min = partial_list_pointer[i];

23 /* lock the mutex associated with minimum_value and
24 update the variable as required */

25 pthread_mutex_lock(&minimum_value_lock) ;

26 if (my_min < minimum_value)

27 minimum_value = my_min;

28 /* and unlock the mutex */

29 pthread_mutex_unlock(&minimum_value_lock);

30 pthread_exit(0);

31 }

— In this example, the test-update operation for minimum_value is pro-
tected by the mutex-lock minimum_value_lock.

— Threads execute pthread_mutex_lock to gain exclusive access to the vari-
able minimum_value. Once this access is gained, the value is updated
as required, and the lock subsequently released. Since at any point of
time, only one thread can hold a lock, only one thread can test-update
the variable.

e Producer-consumer work queues

— A common use of mutex-locks is in establishing a producer-consumer
relationship between threads.

— The producer creates tasks and inserts them into a work-queue.
The consumer threads pick up tasks from the task queue and
execute them.

— Let us consider a simple instance of this paradigm in which the
task queue can hold only one task (in a general case, the task
queue may be longer but is typically of bounded size).

— A simple (and incorrect) threaded program would associate a pro-
ducer thread with creating a task and placing it in a shared data
structure and the consumer threads with picking up tasks from
this shared data structure and executing them. However, this
simple version does not account for the following possibilities:

x The producer thread must not overwrite the shared buffer
when the previous task has not been picked up by a consumer
thread.

* The consumer threads must not pick up tasks until there is
something present in the shared data structure.

* Individual consumer threads should pick up tasks one at a
time.

— To implement this, we can use a variable called task_available. If
this variable is 0, consumer threads must wait, but the producer
thread can insert tasks into the shared data structure task_queue.

— If task_available is equal to 1, the producer thread must wait to
insert the task into the shared data structure but one of the con-
sumer threads can pick up the task available.

— All of these operations on the variable task_available should be
protected by mutex-locks to ensure that only one thread is exe-
cuting test-update on it.

1 pthread_mutex_t task_queue_lock;

2 int task_available;

3

4 /% other shared data structures here */

5

6 main() {

7 /* declarations and initializations */

8 task_available = 0;

9 pthread_initQ);

10 pthread_mutex_init (&task_queue_lock, NULL);
11 /* create and join producer and consumer threads */
12}

10

13
14 void *producer(void *producer_thread_data) {

15 int inserted;

16 struct task my_task;

17 while (!done()) {

18 inserted = 0;

19 create_task(&my_task);

20 while (inserted == 0) {

21 pthread_mutex_lock(&task_queue_lock);
22 if (task_available == 0) {

23 insert_into_queue(my_task);

24 task_available = 1;

25 inserted = 1;

26 }

27 pthread_mutex_unlock(&task_queue_lock) ;
28 }

29 }

30 }

31

32 void *consumer (void *consumer_thread_data) {
33 int extracted;

34 struct task my_task;

35 /* local data structure declarations */

36 while (!done()) {

37 extracted = 0;

38 while (extracted == 0) {

39 pthread_mutex_lock(&task_queue_lock) ;
40 if (task_available == 1) {

41 extract_from_queue (&my_task) ;

42 task_available = 0;

43 extracted = 1;

44 }

45 pthread_mutex_unlock(&task_queue_lock) ;
46 }

47 process_task(my_task) ;

48 }

49 }

In this example, the producer thread creates a task and waits for
space on the queue. This is indicated by the variable task_available
being 0.

The test and update of this variable as well as insertion and ex-
traction from the shared queue are protected by a mutex called

11

task_queue_lock.

Once space is available on the task queue, the recently created
task is inserted into the task queue and the availability of the task
is signaled by setting task_available to 1.

Within the producer thread, the fact that the recently created
task has been inserted into the queue is signaled by the variable
inserted being set to 1, which allows the producer to produce the
next task.

Irrespective of whether a recently created task is successfully in-
serted into the queue or not, the lock is relinquished. This allows
consumer threads to pick up work from the queue in case there is
work on the queue to begin with.

If the lock is not relinquished, threads would deadlock since a
consumer would not be able to get the lock to pick up the task
and the producer would not be able to insert its task into the task
queue.

The consumer thread waits for a task to become available and
executes it when available. As was the case with the producer
thread, the consumer relinquishes the lock in each iteration of the
while loop to allow the producer to insert work into the queue if
there was none.

Overheads of Locking;

x Locks represent serialization points since critical sections must
be executed by threads one after the other.

x Encapsulating large segments of the program within locks can,
therefore, lead to significant performance degradation. It is
important to minimize the size of critical sections.

x For instance, in the above example, the create_task and pro-
cess_task functions are left outside the critical region, but in-
sert_into_queue and extract_from_queue functions are left in-
side the critical region.

x The former is left out in the interest of making the critical
section as small as possible.

x The insert_into_queue and extract_from_queue functions are
left inside because if the lock is relinquished after updating
task_available but not inserting or extracting the task, other

12

*

threads may gain access to the shared data structure while
the insertion or extraction is in progress, resulting in errors.

It is therefore important to handle critical sections and shared
data structures with extreme care.

— Facilitating Locking Overheads

*

It is often possible to reduce the idling overhead associated
with locks using an alternate function, pthread_mutex_trylock.

This function attempts a lock on mutex_lock. If the lock is
successful, the function returns a zero. If it is already locked
by another thread, instead of blocking the thread execution,
it returns a value EBUSY. This allows the thread to do other
work and to poll the mutex for a lock.

Furthermore, pthread_mutez_trylock is typically much faster
than pthread_mutex_lock on typical systems since it does not
have to deal with queues associated with locks for multiple
threads waiting on the lock.

1 int
2 pthread_mutex_trylock (
3 pthread_mutex_t *mutex_lock) ;

¢ Finding k matches in a list

— We consider the example of finding k matches to a query item in
a given list. The list is partitioned equally among the threads.
Assuming that the list has n entries, each of the p threads is
responsible for searching n/p entries of the list.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

void *find_entries(void *start_pointer) {
/* This is the thread function */

struct database_record *next_record;

int count;

current_pointer

do {
next_record = find_next_entry(current_pointer) ;
count = output_record(next_record);

} while (count < requested_number_of_records);

start_pointer;

int output_record(struct database_record *record_ptr) {
int count;

13

16 pthread_mutex_lock(&output_count_lock);

17 output_count ++;

18 count = output_count;

19 pthread_mutex_unlock(&output_count_lock) ;
20

21 if (count <= requested_number_of_records)
22 print_record(record_ptr) ;

23 return (count);

24 %

This program segment finds an entry in its part of the database, up-
dates the global count and then finds the next entry.

If the time for a lock-update count-unlock cycle is t1 and the time
to find an entry is t2, then the total time for satisfying the query is
(t1 4 2) * Mgz, Where nq, is the maximum number of entries found
by any thread.

If t1 and t2 are comparable, then locking leads to considerable over-
head. This locking overhead can be handled by using the function
pthread_mutex_trylock.

Each thread now finds the next entry and tries to acquire the lock
and update count. If another thread already has the lock, the record is
inserted into a local list and the thread proceeds to find other matches.

When it finally gets the lock, it inserts all entries found locally thus far
into the list (provided the number does not exceed the desired number
of entries).

1 int output_record(struct database_record *record_ptr) {
2 int count;

3 int lock_status;

4 lock_status = pthread_mutex_trylock(&output_count_lock);
5 if (lock_status == EBUSY) {

6 insert_into_local_list(record_ptr);

7 return(0) ;

8 3

9 else {

10 count = output_count;

11 output_count += number_on_local_list + 1;

12 pthread_mutex_unlock (&output_count_lock) ;

13 print_records(record_ptr, local_list,

14 requested_number_of_records - count);

15 return(count + number_on_local_list + 1);

16 }

17 }

14

— Notice that if the lock for updating the global count is not available,
the function inserts the current record into a local list and returns.

— If the lock is available, it increments the global count by the number
of records on the local list, and then by one (for the current record). It
then unlocks the associated lock and proceeds to print as many records
as are required using the function print_records.

— The time for execution of this version is less than the time for the
first one on two counts: First, as mentioned, the time for execut-
ing a pthread_mutex_trylock is typically much smaller than that for
a pthread_mutex_lock. Second, since multiple records may be inserted
on each lock, the number of locking operations is also reduced.

1.3.2 Condition Variables for Synchronization

e As it is noted in the previous section, indiscriminate use of locks can
result in idling overhead from blocked threads. While the function
pthread_mutex_trylock alleviates this overhead, it introduces the over-
head of polling for availability of locks.

e For example, if the producer-consumer example is rewritten using pthread_mutex_trylock
instead of pthread_mutex_lock, the producer and consumer threads would
have to periodically poll for availability of lock (and subsequently avail-
ability of buffer space or tasks on queue).

e A natural solution to this problem is to suspend the execution of the
producer until space becomes available (an interrupt driven mechanism
as opposed to a polled mechanism).

e The availability of space is signaled by the consumer thread that con-
sumes the task. The functionality to accomplish this is provided by a
condition variable.

e A condition variable is a data object used for synchronizing threads.
This variable allows a thread to block itself until specified data reaches
a predefined state.

e In the producer-consumer case, the shared variable task_available must
become 1 before the consumer threads can be signaled.

e The boolean condition task_available == 1 is referred to as a predicate.
A condition variable is associated with this predicate.

e When the predicate becomes true, the condition variable is used to
signal one or more threads waiting on the condition.

15

e A single condition variable may be associated with more than one pred-
icate. However, this is strongly discouraged since it makes the program
difficult to debug.

e A condition variable always has a mutex associated with it. A thread
locks this mutex and tests the predicate defined on the shared variable
(in this case: task_available); if the predicate is not true, the thread
waits on the condition variable associated with the predicate using the
function pthread_cond_wait.

1 int pthread_cond_wait(pthread_cond_t *cond,
2 pthread_mutex_t *mutex);

e A call to this function blocks the execution of the thread until it receives
a signal from another thread or is interrupted by an OS signal.

e In addition to blocking the thread, the pthread_cond_wait function
releases the lock on mutex. This is important because otherwise no
other thread will be able to work on the shared variable task_available
and the predicate would never be satisfied.

e When the thread is released on a signal, it waits to reacquire the lock
on mutex before resuming execution.

e [t is convenient to think of each condition variable as being associated
with a queue. Threads performing a condition wait on the variable
relinquish their lock and enter the queue.

e When the condition is signaled (using pthread_cond signal), one
of these threads in the queue is unblocked, and when the mutex be-
comes available, it is handed to this thread (and the thread becomes
runnable).

e In the context of our producer-consumer example, the producer thread
produces the task and, since the lock on mutex has been relinquished
(by waiting consumers), it can insert its task on the queue and set
task_available to 1 after locking mutex. Since the predicate has now
been satisfied, the producer must wake up one of the consumer threads
by signaling it.

1 int pthread_cond_signal (pthread_cond_t *cond);

16

The function unblocks at least one thread that is currently waiting on
the condition variable cond. The producer then relinquishes its lock on
mutex by explicitly calling pthread_mutex_unlock, allowing one of the
blocked consumer threads to consume the task.

Before our producer-consumer example is rewriten using condition vari-
ables, we need to introduce two more function calls for initializing and
destroying condition variables, pthread_cond_init and pthread_cond_destroy;
respectively.

1 int pthread_cond_init(pthread_cond_t *cond,
const pthread_condattr_t *attr);
3 int pthread_cond_destroy(pthread_cond_t *cond);

The function pthread_cond_init initializes a condition variable (pointed to by
cond) whose attributes are defined in the attribute object attr. Setting this
pointer to NULL assigns default attributes for condition variables.

If at some point in a program a condition variable is no longer required, it
can be discarded using the function pthread_cond_destroy.

These functions for manipulating condition variables enable us to rewrite
our producer-consumer segment.

Producer-consumer using condition variables

— Condition variables can be used to block execution of the producer
thread when the work queue is full and the consumer thread when the
work queue is empty.

— We use two condition variables cond_queue_empty and cond_queue_full
for specifying empty and full queues respectively.

— The predicate associated with cond_queue_empty is task_available ==
0, and cond_queue_full is asserted when task_available == 1.

— The producer queue locks the mutex task_queue_cond_lock associated
with the shared variable task_available.

— It checks to see if task_available is 0 (i.e., queue is empty). If this is
the case, the producer inserts the task into the work queue and signals
any waiting consumer threads to wake up by signaling the condition
variable cond_queue_full. It subsequently proceeds to create additional
tasks.

— If task_available is 1 (i.e., queue is full), the producer performs a con-
dition wait on the condition variable cond_queue_empty (i.e., it waits
for the queue to become empty).

17

The reason for implicitly releasing the lock on task_queue_cond_lock
becomes clear at this point. If the lock is not released, no consumer
will be able to consume the task and the queue would never be empty.
At this point, the producer thread is blocked.

Since the lock is available to the consumer, the thread can consume
the task and signal the condition variable cond_queue_empty when the
task has been taken off the work queue.

The consumer thread locks the mutex task_queue_cond_lock to check if
the shared variable task_available is 1. If not, it performs a condition
wait on cond_queue_full. (Note that this signal is generated from the
producer when a task is inserted into the work queue.)

If there is a task available, the consumer takes it off the work queue and
signals the producer. In this way, the producer and consumer threads
operate by signaling each other. It is easy to see that this mode of
operation is similar to an interrupt-based operation as opposed to a
polling-based operation of pthread_mutez_trylock.

1 pthread_cond_t cond_queue_empty, cond_queue_full;
2 pthread_mutex_t task_queue_cond_lock;

3 int task_available;

4

5 /* other data structures here */

6

7 main() {

8 /* declarations and initializations */

9 task_available = 0;

10 pthread_init();

11 pthread_cond_init (&cond_queue_empty, NULL);

12 pthread_cond_init(&cond_queue_full, NULL);

13 pthread_mutex_init (&task_queue_cond_lock, NULL);
14 /* create and join producer and consumer threads */
15 %}

16

17 void *producer(void *producer_thread_data) {

18 int inserted;

19 while (!done()) {

20 create_task();

21 pthread_mutex_lock(&task_queue_cond_lock);
22 while (task_available == 1)

23 pthread_cond_wait (&cond_queue_empty,
24 &task_queue_cond_lock) ;

25 insert_into_queue();

26 task_available = 1;

18

27 pthread_cond_signal (&cond_queue_full);

28 pthread_mutex_unlock(&task_queue_cond_lock) ;
29 }

30 }

31

32 void *consumer(void *consumer_thread_data) {

33 while (!done()) {

34 pthread_mutex_lock(&task_queue_cond_lock) ;
35 while (task_available == 0)

36 pthread_cond_wait(&cond_queue_full,

37 &task_queue_cond_lock) ;

38 my_task = extract_from_queue();

39 task_available = 0;

40 pthread_cond_signal (&cond_queue_empty) ;

41 pthread_mutex_unlock(&task_queue_cond_lock) ;
42 process_task(my_task) ;

43 }

4 }

An important point to note about this program segment is that
the predicate associated with a condition variable is checked in a
loop.

One might expect that when cond_queue_full is asserted, the value
of task_available must be 1. However, it is a good practice to check
for the condition in a loop because the thread might be woken up
due to other reasons (such as an OS signal).

In other cases, when the condition variable is signaled using a
condition broadcast (signaling all waiting threads instead of just
one), one of the threads that got the lock earlier might invalidate
the condition.

In the example of multiple producers and multiple consumers, a
task available on the work queue might be consumed by one of
the other consumers.

When a thread performs a condition wait, it takes itself off the
runnable list consequently, it does not use any CPU cycles until it
is woken up. This is in contrast to a mutex lock which consumes
CPU cycles as it polls for the lock.

In the above example, each task could be consumed by only one
consumer thread. Therefore, we choose to signal one blocked
thread at a time.

19

— In some other computations, it may be beneficial to wake all
threads that are waiting on the condition variable as opposed to a
single thread. This can be done using the function pthread_cond_broadcast.

1 int pthread_cond_broadcast(pthread_cond_t *cond);

— An example of this is in the producer-consumer scenario with
large work queues and multiple tasks being inserted into the work
queue on each insertion cycle. Another example of the use of
pthread_cond_broadcast is in the implementation of barriers.

— It is often useful to build time-outs into condition waits. Using
the function pthread_cond_timedwait, a thread can perform a
wait on a condition variable until a specified time expires. At this
point, the thread wakes up by itself if it does not receive a signal
or a broadcast.

1 int pthread_cond_timedwait(pthread_cond_t *cond,
2 pthread_mutex_t *mutex,
3 const struct timespec *abstime);

If the absolute time abstime specified expires before a signal or
broadcast is received, the function returns an error message. It
also reacquires the lock on mutex when it becomes available.

20

	Programming Shared Memory
	Why Threads?
	Thread Basics: Creation and Termination
	Synchronization Primitives in Pthreads
	Mutual Exclusion for Shared Variables
	Condition Variables for Synchronization

