
1 Numerical Differentiation and Integration

• We continue to exploit the useful properties of polynomials to develop
methods for a computer to do integrations and to find derivatives.

• When the function is explicitly known, we can emulate the methods of
calculus. But doing so in getting derivatives requires the subtraction
of quantities that are nearly equal and that runs into round-off error.

• However, integration involves only addition, so round-off is not prob-
lem; of course, we cannot often find the true answer numerically be-
cause the analytical value is the limit of the sum of an infinite number
of terms.

• We must be satisfied with approximations for both derivatives and
integrals but, for most applications, the numerical answer is adequate.

• If we are working with experimental data that are displayed in a table of
[x, f(x)] pairs emulation of calculus is impossible; we must approximate
the function behind the data in some way.

– Differentiation with a Computer: Employs the interpolating
polynomials to derive formulas for getting derivatives. These can
be applied to functions known explicitly as well as those whose
values are found in a table.

– Numerical Integration-The Trapezoidal Rule: Approximates,
the integrand function with a linear interpolating polynomial to
derive a very simple but important formula for numerically inte-
grating functions between given limits.

1.1 Differentiation with a Computer

• The derivative of a function, f(x) at, x = a, is defined as

df

dx
|x=a = lim∆x→0

f(a + ∆x) − f(a)

∆x

This is called a forward-difference approximation. The limit could be
approached from the opposite direction, giving a backward-difference

approximation.

• It should be clear that a computer can calculate an approximation to
the derivative from

df

dx
|x=a =

f(a + ∆x) − f(a)

∆x
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Table 1: Forward-difference approximations for f(x) = exsin(x).

if a very small value is used for ∆x.

• What if we do this, recalculating with smaller and smaller values of x
starting from an initial value that is not small? We should expect to
find an optimal value for x because round-off errors in the numerator
will become great as x approaches zero, and these are magnified by the
small value in the denominator.

• When we try this for f(x) = exsin(x) at x = 1.9, starting with
∆x = 0.05 and halving ∆x each time, we find that the errors of the
approximation decrease as ∆x is reduced until about ∆x = 0.05/128.

• The analytical answer is 4.1653826. Table 1 gives the results. Notice
that each successive error is about 1/2 of the previous error as ∆x is
halved until ∆x gets quite small, at which time round off affects the
ratio.

• At values for ∆x smaller than 0.05/128, the error of the approximation
increases due to round off. In effect, the best value for ∆x is when the
effects of round-off and truncation errors are balanced.

• If a backward-difference approximation is used; similar results are ob-
tained.
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• It should be clear that a computer can calculate an approximation to
the derivative from

df

dx
|x=a =

f(a) − f(a − ∆x)

∆x

• With MATLAB,

– it can get the analytical answer to the function of Table 1.

>> f=’exp(x)*sin(x)’

>> df=diff(f,’x’)

>> numeric(subs(df,1.9,’x’))

– it can compute numerically;

>> x=[1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9];

>> del=[.05 .05/2 .05/4 .05/8 .05/16 .05/32

.05/64 .05/128 .05/256];

>> xplus=x+del;

>> f=exp(x).*sin(x);

>> fplus=exp(xplus).*sin(xplus);

>> num=fplus-f;

>> deriv=num./del;

• It is not by chance that the errors are about halved each time. Look
at this Taylor series where we have used h for ∆x:

f(x + h) = f(x) + f ′(x) ∗ h + f ′′(ξ) ∗ h2/2

where the last term is the error. The value of ξ is at some point between
x and x + h. If we solve this equation for f ′(x), we get

f ′(x) = (f(x + h) − f(x))/h − f ′′(ξ) ∗ h2/2 (1)

which shows that the errors should be about proportional to h, precisely
what Table 1 shows. If we repeat this but begin with the Taylor series
for f(x − h), it turns out that

f ′(x) = (f(x) − f(x − h))/h + f ′′(ζ) ∗ h2/2 (2)

where ζ is between x and x−h, so the two error terms are not identical
though both are O(h).
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Table 2: Central-difference approximations for f(x) = exsin(x).

• If we add Eqs. 1 and 2, then divide by 2, we get the central-difference

approximation to the derivative:

f ′(x) = (f(x + h) − f(x − h))/(2h) − f ′′′(ξ)h2/2 (3)

We had to extend the two Taylor series by an additional term to get
the error because the f ′′(x) terms cancel.

• This shows that using a central-difference approximation is a much
preferred way to estimate the derivative; even though we use the same
number of computations of the function at each step, we approach the
answer much more rapidly.

• Table 2 illustrates this, showing that errors decrease about four fold
when ∆x is halved (as Eq. 3 predicts) and that a more accurate value
is obtained.

1.1.1 Extrapolation Techniques

• The errors of a central-difference approximation to f ′(x) were of O(h2).
In effect, suggests that the errors are proportional to h2 although that
is true only in the limit as h → 0. Unless h is quite large, we can
assume the proportionality.

• So, from two computations with h being half as large in the second, we
can estimate the proportionality factor, C. For example, in Table 2; If
errors were truly C(h2), we can write two equations:

True value = 4.15831 + C(0.052)
True value = 4.16361 + C(0.0252)
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h Approximation
0.05 4.15831
0.025 4.16361

from which we can solve for the true value, eliminating the unknown
constant C, getting;

True value = 4.16361 + (1/3) ∗ (4.16361 − 4.15831)
= 4.16538

which is very close to the exact value for f ′(1.9), 4.165382.

• You can easily derive the general formula for improving the estimate,
when errors decrease by O(hn)

Better = more + (1/(2n − 1)) ∗ (more − less)
estimate accurate

(4)

where more and less in the last term are the two estimates at h1 and
h2 = h1/2. More accurate is the estimate at the smaller value of h and
n is the power of h in the order of the errors.

• As example, apply this to values from Table 1 which were from forward-
difference approximations. Here the errors are O(h).

h Approximation
0.05 4.05010
0.025 4.10955

Using Eq. 4, we have

Better estimate = 4.10955 + (1/(21 − 1))(4.10955 − 4.05010)
= 4.16900

which shows considerable improvement but not as good as from the
central differences.

1.2 Numerical Integration - The Trapezoidal Rule

• Given the function, f(x), the antiderivative is a function F (x) such
that F ′(x) = f(x). The definite integral

∫

b

a

f(x)dx = F (b) − F (a)
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Figure 1: The trapezoidal rule.

can be evaluated from the antiderivative. Still, there are functions that
do not have an antiderivative expressible in terms of ordinary functions.

• Is there any way that the definite integral can be found when the an-
tiderivative is unknown? We can do it numerically.

• The definite integral is the area between the curve of f(x) and the x-
axis. That is the principle behind all numerical integration-we divide
the distance from x = a to x = b into vertical strips and add the areas
of these strips (the strips are often made equal in widths but that is
not always required).

1.2.1 The Trapezoidal Rule

• Approximate the curve with a sequence of straight lines; in effect, we
slope the top of the strips to match with the curve as best we can.

• We are approximating the curve with interpolating polynomials of
degree-1. The gives us the trapezoidal rule. Figure 1 illustrates this.

• It is clear that the area of the strip from xi to xi+1 gives an approxi-
mation to the area under the curve:

∫

xi+1

xi

f(x)dx ≈
fi + fi+1

2
(xi+1 − xi)

We will usually write h = (xi+1 − xi) for the width of the interval.
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• Error term for the trapezoidal integration is

Error = −(1/12)h3f ′(ξ) = O(h3)

1.2.2 The Composite Trapezoidal Rule

• If we are getting the integral of a known function over a larger span of
x-values, say, from x = a to x = b, we subdivide [a,b] into n smaller
intervals with ∆x = h, apply the rule to each subinterval, and add.
This gives the composite trapezoidal rule;

∫

b

a

≈
n−1
∑

i=0

(h/2)(fi + fi+1) = (h/2)(f0 + 2f1 + 2f2 + . . . + 2fn−1 + fn)

The error is not the local error O(h3) but the global error, the sum of
n local errors;

Global error = (−1/12)h3[f ′′(ξ1) + f ′′(ξ2) + . . . + f ′′(ξn)]

In this equation, each of the ξi is somewhere within each subinterval. If
f ′′(x) is continuous in [a, b], there is some point within [a,b] at which
the sum of the f ′′(ξi) is equal to f ′′(ξ), where ξ in [a, b]. We then see
that, because nh = (b − a),

Global error = (−1/12)h3f ′′(ξ) =
−(b − a)

12
h2f ′′(ξ) = O(h2)

An Algorithm for Integration by the Composite Trapezoidal

Rule:
Given at function f(x)
(Get user inputs)
Input
a, b = end points of interval
n=number of intervals
(Do the integration)
Set h = (b − a)/n.
Set sum = 0
For i = 1 to n − 1 Step 1 Do
Set x = a + h ∗ i
Set sum = sum + 2 ∗ f(x)
End Do (For i)
Set sum = sum + f(a) + f(b)
Set ans = sum ∗ h/2
The value of the integral is given by answer

7



Table 3: Example for the trapezoidal rule.

• Example: Given the values for x and f(x) in Table3, use the trape-
zoidal rule to estimate the integral from x = 1.8 to x = 3.4. Applying
the trapezoidal rule:

∫ 3.4

1.8 f(x)dx ≈ 0.2

2
[6.050 + 2(7.389) + 2(9.025) + 2(11.023) + 2(13.464)

+2(16.445) + 2(20.086) + 2(24.533) + 29.964]
= 23.9944

The data in Table 3 are for f(x) = ex and the true value is e3.4−el.8 =
23.9144. The trapezoidal rule value is off by 0.08; there are three digits
of accuracy. How does this compare to the estimated error?

Error = − 1

12
h3nf ′′(ξ), 1.8 ≤ ξ ≤ 3.4

= − 1

12
(0.2)3(8) ∗

{

e1.8 (max)
e3.4 (min)

}

=

{

−0.0323 (max)
−0.1598 (min)

}

Alternatively,

Error = − 1

12
(0.2)2(3.4 − 1.8) ∗

{

e1.8 (max)
e3.4 (min)

}

=

{

−0.0323 (max)
−0.1598 (min)

}

The actual error was −0.080.
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