1 Solving Nonlinear Equations

• We have given the following function;

$$f(x) = 3x + \sin(x) - e^x$$

Look at to the plot of the function to learn where the function crosses the x-axis. MATLAB can do it for us:

```
>> fx = inline ( ' 3 *x + \sin (x) - \exp (x) ') >> fplot (fx, [ 0 2 ]); grid on
```

An algorithm for Halving the Interval (Bisection):

The MATLAB program for this algorithm is given.

```
function rtn=bisec(fx,xa,xb,n)
%bisec does n bisections to approximate
% a root of fx
x=xa; fa=eval(fx);
x=xb; fb=eval(fx);
for i=1:n;
   xc=(xa+xb)/2; x=xc; fc=eval(fx);
   X=[i,xa,xb,xc,fc];
   disp(X);
   if fc*fa<0
       xb=xc;
       else xa=xc;
   end
end</pre>
```

save with the name bisec.m. Then;

```
>> fx=' 3 *x + \sin(x) - \exp(x)'
>> bisec(fx,0,1,13)
```

Modify this MATLAB program for the bisection method for using a tolerance value of 1E-4.

• Use the function used in the previous item, and write a MATLAB program for the method of false position (regula falsi):

An algorithm for the method of false position (regula falsi):

```
To determine a root of f(x) = 0, given two values of x_0 and x_1 that bracket a root: that is, f(x_0) and f(x_1) are of opposite sign,

Repeat
Set x_2 = x_1 - f(x_1) * \frac{(x_0 - x_1)}{f(x_0) - f(x_1)}
If f(x_2) is of opposite sign to f(x_0) Then
Set x_1 = x_2,
Else
Set x_0 = x_2
End If
Until |f(x_2)| < tolerance value.
```

ullet To obtain the true value for the root r, which is needed to compute the actual error. MATLAB surely used a more advanced method than bisection.

```
>> solve('3*x + sin(x) - exp(x)')
ans=
.36042170296032440136932951583028
```

Tabulate the actual error values as the following;

n	Bisection $(x_n - r)$	Regula Falsi $(x_n - r)$	Bisection $f(x_n)$	Regula Falsi $f(x_n)$
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
12				
13				
14				
15				

Table 1: The Error Sequences $\,$