
1 OPERATING SYSTEMS LABORATORY

VII Additional - InterProcessCommunica-

tions II

Examples&Exercises:

• We discuss five types of interprocess communication:

1. Shared memory permits processes to communicate by simply read-
ing and writing to a specified memory location. (We already dis-
cussed.)

2. Mapped memory is similar to shared memory, except that it is
associated with a file in the filesystem. (We will not discuss.)

3. Pipes permit sequential communication from one process to a re-
lated process.

4. FIFOs are similar to pipes, except that unrelated processes can
communicate because the pipe is given a name in the filesystem.

5. Sockets support communication between unrelated processes even
on different computers.

• Compile the code.

• You do not have a to do list. You should
find out how to execute the codes.

• Analyze the code and output.

1. Pipe; code40.c

• A fork spawns a child process.

• The child inherits the pipe file descriptors.

• The parent writes a string to the pipe, and the child reads it out.

• The program converts these file descriptors into FILE* streams
using fdopen.

• Why fflush is used in the function writer?

2. Another example for pipe; code41.c and code42.c

• One process sends a set of letters by means of writing to pipe.

1

http://siber.cankaya.edu.tr/OperatingSystems/cfiles/code40.c
http://siber.cankaya.edu.tr/OperatingSystems/cfiles/code41.c
http://siber.cankaya.edu.tr/OperatingSystems/cfiles/code42.c


• Other process reads this input from pipe and reports the number
of lowercase and uppercase characters in this set.

• You should supply an argument to seed the random number gen-
erator.

• Execute several times by changing the seed each time.

3. A first-in, first-out (FIFO) file is a pipe that has a name in the filesys-
tem.

• Any process can open or close the FIFO; the processes on either
end of the pipe need not be related to each other.

• FIFOs are also called named pipes.

• You can make a FIFO using the mkfifo command.

$ mkfifo /tmp/fifo

$ ls -l /tmp/fifo

• The first character of the output from ls is p, indicating that this
file is actually a FIFO (named pipe).

• In one window, read from the FIFO by invoking the following:

$ cat < /tmp/fifo

• In a second window, write to the FIFO by invoking this:

$ cat > /tmp/fifo

• Then type in some lines of text. Each time you press Enter, the
line of text is sent through the FIFO and appears in the first
window.

• Close the FIFO by pressing < Ctrl + D > in the second window.
Remove the FIFO with this line:

$ rm /tmp/fifo

• Creating a FIFO; create a FIFO programmatically using the mk-

fifo function. Include < sys/types.h > and < sys/stat.h > if you
call mkfifo.

• Accessing a FIFO; access a FIFO just like an ordinary file .To com-
municate through a FIFO, one program must open it for writing,
and another program must open it for reading.

– To write a buffer of data to a FIFO using low-level I/O rou-
tines, you could use this code:

2



int fd = open (fifo_path, O_WRONLY);

write (fd, data, data_length);

close (fd);

– To read a string from the FIFO using C library I/O functions,
you could use this code:

FILE* fifo = fopen (fifo_path, "r");

fscanf (fifo, "%s", buffer);

fclose (fifo);

4. Write a program that creates a FIFO and access to that FIFO.

5. Sockets are more flexible than previously discussed communication
techniques. These are the system calls involving sockets:

• socket - Creates a socket

• closes - Destroys a socket

• connect - Creates a connection between two sockets

• bind - Labels a server socket with an address

• listen - Configures a socket to accept conditions

• accept - Accepts a connection and creates a new socket for the
connection

Sockets are represented by file descriptors. Using Local Namespace
Sockets (we also have network sockets)

• Two programs; the server program code43.c creates a local names-
pace socket and listens for connections on it.

– When it receives a connection, it reads text messages from
the connection and prints them until the connection closes.

– If one of these messages is ”quit”, the server program removes
the socket and ends.

– The socket-server program takes the path to the socket as its
command-line argument.

• The client program code44.c connects to a local namespace socket
and sends a message. The name path to the socket and the mes-
sage are specified on the command line.

• List the files and see the socket during communication. The first
character of the output from ls is s, indicating that this file is
actually a socket.

3

http://siber.cankaya.edu.tr/OperatingSystems/cfiles/code43.c
http://siber.cankaya.edu.tr/OperatingSystems/cfiles/code44.c

	OPERATING SYSTEMS LABORATORY VII Additional - InterProcessCommunications II

