1 OPERATING SYSTEMS LABORATORY
VII Additional - InterProcessCommunica-
tions 11

Examples& Exercises:

e We discuss five types of interprocess communication:

1.

Shared memory permits processes to communicate by simply read-
ing and writing to a specified memory location. (We already dis-
cussed.)

Mapped memory is similar to shared memory, except that it is
associated with a file in the filesystem. (We will not discuss.)

Pipes permit sequential communication from one process to a re-
lated process.

FIFOs are similar to pipes, except that unrelated processes can
communicate because the pipe is given a name in the filesystem.

Sockets support communication between unrelated processes even
on different computers.

e Compile the code.

e You do not have a to do list. You should
find out how to execute the codes.

e Analyze the code and output.

1. Pipe; coded0.c

A fork spawns a child process.
The child inherits the pipe file descriptors.
The parent writes a string to the pipe, and the child reads it out.

The program converts these file descriptors into FILE* streams
using fdopen.

Why fHush is used in the function writer?

2. Another example for pipe; code4l.c and code42.c

One process sends a set of letters by means of writing to pipe.


http://siber.cankaya.edu.tr/OperatingSystems/cfiles/code40.c
http://siber.cankaya.edu.tr/OperatingSystems/cfiles/code41.c
http://siber.cankaya.edu.tr/OperatingSystems/cfiles/code42.c

Other process reads this input from pipe and reports the number
of lowercase and uppercase characters in this set.

You should supply an argument to seed the random number gen-
erator.

Execute several times by changing the seed each time.

3. A first-in, first-out (FIFO) file is a pipe that has a name in the filesys-

tem.

Any process can open or close the FIFO; the processes on either
end of the pipe need not be related to each other.

FIFOs are also called named pipes.

You can make a FIFO using the mkfifo command.

$ mkfifo /tmp/fifo
$ 1s -1 /tmp/fifo

The first character of the output from Is is p, indicating that this
file is actually a FIFO (named pipe).

In one window, read from the FIFO by invoking the following:
$ cat < /tmp/fifo

In a second window, write to the FIFO by invoking this:

$ cat > /tmp/fifo

Then type in some lines of text. Each time you press Enter, the
line of text is sent through the FIFO and appears in the first
window.

Close the FIFO by pressing < Ctrl + D > in the second window.
Remove the FIFO with this line:
$ rm /tmp/fifo

Creating a FIFO; create a FIFO programmatically using the mk-
fifo function. Include < sys/types.h > and < sys/stat.h > if you
call mkfifo.

Accessing a FIFO; access a FIFO just like an ordinary file . To com-
municate through a FIFO, one program must open it for writing,
and another program must open it for reading.

— To write a buffer of data to a FIFO using low-level 1/O rou-
tines, you could use this code:

2



int fd = open (fifo_path, O_WRONLY);
write (fd, data, data_length);
close (fd);
— To read a string from the FIFO using C library I/O functions,
you could use this code:
FILEx fifo = fopen (fifo_path, "r");
fscanf (fifo, "%s", buffer);
fclose (fifo);

4. Write a program that creates a FIFO and access to that FIFO.

5. Sockets are more flexible than previously discussed communication
techniques. These are the system calls involving sockets:

socket - Creates a socket

e closes - Destroys a socket

e connect - Creates a connection between two sockets
e bind - Labels a server socket with an address

e [isten - Configures a socket to accept conditions

e accept - Accepts a connection and creates a new socket for the
connection

Sockets are represented by file descriptors. Using Local Namespace
Sockets (we also have network sockets)

e Two programs; the server program code43.c creates a local names-
pace socket and listens for connections on it.

— When it receives a connection, it reads text messages from
the connection and prints them until the connection closes.

— If one of these messages is " quit”, the server program removes
the socket and ends.

— The socket-server program takes the path to the socket as its
command-line argument.

e The client program code44.c connects to a local namespace socket
and sends a message. The name path to the socket and the mes-
sage are specified on the command line.

e List the files and see the socket during communication. The first
character of the output from Is is s, indicating that this file is
actually a socket.


http://siber.cankaya.edu.tr/OperatingSystems/cfiles/code43.c
http://siber.cankaya.edu.tr/OperatingSystems/cfiles/code44.c

	OPERATING SYSTEMS LABORATORY VII Additional - InterProcessCommunications II

