If a Beowulf user expects many of the programs to be disk-write bound, it may be worth considering simply using EXT2, the standard nonjournaling file system. Many parallel programs use the local disk simply as a scratch disk to stage output files that then must be copied off the local node and onto the centralized, shared file system. In those cases, the limiting factor is the network I/O to move the partial results from the compute nodes to the central, shared store. Improving disk-write performance by using a nonjournaling file system would have little advantage in such cases, while the improved reliability and ease of use of a journaling file system would be well worth the effort.
Unfortunately, NFS does have two shortcomings for the Beowulf user: scalability and synchronization. Most Linux clusters find it convenient to have each compute node mount the user's home directory from a central server. In this way, a user in the typical edit, compile, and run development loop can recompile the parallel program and then spawn the program onto the Beowulf, often with the use of an mpirun or PBS command. While using NFS does indeed make this operation convenient, the result can be a B3 (big Beowulf bottleneck).
The best technical solution would be a file system or storage system that could use a tree-based distribution mechanism and possibly use available high-performance network adapters such as Myrinet or Gigabit Ethernet to transfer files to and from the compute nodes. Unfortunately, while several such systems exist, they are research projects and do not have a pervasive user base. Other solutions such as shared global file systems, often using expensive fiber channel solutions, may increase disk bandwidth but are usually even less scalable. For generic file server access from the compute nodes to a shared server, NFS is currently the most common option.
PVFS, the Parallel Virtual File System. PVFS is different from NFS because it can distribute parts of the operating system to possibly dozens of Beowulf nodes. When done properly, the bottleneck is no longer an Ethernet adapter or hard disk. Furthermore, PVFS provides parallel access, so many readers or writers can access file data concurrently.