Process 0 Process 1

A: F]
Send Recv

Figure 1: MPI messages.

1 MPI Hands-On - Sending and Receiving
Messages 1

Questions:
e To whom is data sent?
e What is sent?

e How does the receiver identify it?

1.1 Current Message-Passing

Message = data + envelope

MPI Send{starthuf, count, datatype,
\ DATA/
dest, tag, comm)

Vol

ENVELOPE

Figure 2: Data+Envelope.

e MPI Data; Arguments

— startbuf (starting location of data)

— count (number of elements)

% receive count > send count
— datatype (basic or derived)

* receiver datatype = send datatype (unless MPI_PACKED)

« Elementary (all C and FORTRAN types). Specifications of
elementary datatypes allows heterogeneous communication.

x MPI basic datatypes for C:

WPI Datatype Z Datatype

MFI CHAR signed char

MFI SHORT signed short int
MEI INT signed int
MPI:LONG signed long int
MEFI UNSIGNED CHAR unsigned char

MFI UNSIGMED SHORT unsigned short int
MPI UNSIGNED unsigned int

MFI UNSIGMED LONG unsigned long int
MPI FLOAT float

MEFI DOUBLE double
MPI:LONG_DOUBLE long double

MPI BYTE

MPI PACEED

Figure 3: MPI basic datatypes for C.

e MPI Envelope; Arguments

— destination or source

% rank in a communicator

x receive = sender or MPI_.ANY_SOURCE
— tag

x integer chosen by programmer

* receive = sender or MPI_LANY_TAG (wild cards allowed)
— communicator

* defines communication ”space”
* group + context

* receive = send

— Collective operations typically operated on all processes.

— All communication (not just collective operations) takes place in
groups.

— A context partitions the communication space. A message sent in
one context cannot be received in another context. Contexts are
managed by the system.

— A group and a context are combined in a communicator.

— Source/destination in send /receive operations refer to rank in group
associated with a given communicator.

1.2 The Buffer

Sending and receiving only a contiguous array of bytes. Specified in MPI by
starting address, datatype, and count

e hides the real data structure from hardware which might be able to
handle it directly.

e requires pre-packing dispersed data

— rows of a matrix stored columnwise.

— general collections of structures.

e prevents communications between machines with different representa-
tions (even lengths) for same data type

1.3 MPI Basic Send/Receive
Thus the basic send (blocking!!) has become:

MPI_Send(start, count, datatype, dest, tag, comm)
and the receive (blocking!!):
MPI_Recv(start, count, datatype, source, tag, comm, status)

The source, tag, and count of the message actually received can be retrieved
from status.

MPI_Status status;
MPI_Recv(..., &status);

. status.MPI_TAG; ... status.MPI_SOURCE;
MPI_Get_count(&status, datatype, &count);

MPI_Get_count may be used to determine how much data of a particular
type was received.

Two simple collective operations (just to introduce!):

MPI_Bcast(start, count, datatype, root, comm)
MPI_Reduce(start, result, count, datatype,
operation, root, comm)

1.4 Exercises/Examples

1. An example for communication world codel.

#include <stdio.h>
#include <mpi.h>
int main(int argc, char **argv)
{
int my_rank, numprocs;
MPI_Init(&argc,&argv);
MPI_Comm_size (MPI_COMM_WORLD,&numprocs) ;
MPI_Comm_rank (MPI_COMM_WORLD,&id) ;
/*printf ("Hello! It is processor %d.\n", id);*/
if (my_rank == 0)
{
printf ("Hello! It is processor 0. There are %d processors in this
communication world.\n", numprocs);
printf ("I am process %i out of %i: Hello world!\n",my_rank, size);
}
else

{
printf ("I am process %i out of %i: Hello world!\n", my_rank, size);
}
MPI_Finalize();
return O;

}

2. Write a program to send/receive and print out your name and age to
each processors. Hints:

char* my_name = "Cem Ozdogan";
MPI_Send(&my_name, 11, MPI_CHAR, dest, 2, MPI_COMM_WORLD);
MPI_Recv(&recv_my_name, 11, MPI_CHAR, O, 2, MPI_COMM_WORLD, &status);

http://siber.cankaya.edu.tr/ozdogan/ParallelComputing/cfiles/code1.c

	MPI Hands-On - Sending and Receiving messages
	Current Message-Passing
	The Buffer
	MPI Basic Send/Receive
	Exercises/Examples

