
1 Programming Using the Message-Passing

Paradigm

• A message passing architecture uses a set of primitives that allows
processes to communicate with each other.

• i.e., send, receive, broadcast, and barrier.

• Numerous programming languages and libraries have been developed
for explicit parallel programming.These differ in

– their view of the address space that they make available to the
programmer,

– the degree of synchronization imposed on concurrent activities,
and the multiplicity of programs.

• Some links; Scientific Applications on Linux,
Parallel Programming Laboratory.

1.1 Principles of Message-Passing Programming

There are two key attributes that characterize the message-passing program-
ming paradigm.

1. the first is that it assumes a partitioned address space,

2. the second is that it supports only explicit parallelization.

• Each data element must belong to one of the partitions of the
space;

– hence, data must be explicitly partitioned and placed.

– Adds complexity, encourages data locality, NUMA architecture.

• All interactions (read-only or read/write) require cooperation of two

processes (the process that has the data and the process that wants
to access the data).

– process that has the data must participate in the interaction,

– for dynamic and/or unstructured interactions, the complexity of
the code can be very high,

– primary advantage of explicit two-way interactions is that the
programmer is fully aware of all the costs of non-local interactions

1

http://sal.jyu.fi/index.shtml
http://charm.cs.uiuc.edu/


– more likely to think about algorithms (and mappings) that mini-
mize interactions.

• The programmer is responsible for analyzing the underlying serial al-
gorithm/application.

• Identifying ways by which he or she can decompose the computations
and extract concurrency.

• As a result, programming using the message-passing paradigm tends
to be hard and intellectually demanding.

• However, on the other hand, properly written message-passing pro-
grams can often achieve very high performance and scale to a very large
number of processes.

1.2 Structure of Message-Passing Programs

• Message-passing programs are often written using the asynchronous or
loosely synchronous paradigms.

• In the asynchronous paradigm, all concurrent tasks execute asyn-
chronously.

– However, such programs can be harder and can have non-deterministic
behavior due to race conditions.

• Loosely synchronous programs are a good compromise between two
extremes.

– In such programs, tasks or subsets of tasks synchronize to perform
interactions.

– However, between these interactions, tasks execute completely
asynchronously.

• In its most general form, the message-passing paradigm supports exe-
cution of a different program on each of the p processes.

• This provides the ultimate flexibility in parallel programming, but
makes the job of writing parallel programs effectively unscalable.

• For this reason, most message-passing programs are written using the
single program multiple data (SPMD).

2



• In SPMD programs the code executed by different processes is identical
except for a small number of processes (e.g., the ”root” process).

• In an extreme case, even in an SPMD program, each process could
execute a different code (many case statements).

• But except for this degenerate case, most processes execute the same
code.

• SPMD programs can be loosely synchronous or completely asynchronous.

1.3 The Building Blocks: Send and Receive Opera-

tions

• Since interactions are accomplished by sending and receiving messages,
the basic operations in the message-passing programming paradigm are
send and receive.

• In their simplest form, the prototypes of these operations are defined
as follows:

– sendbuf points to a buffer that stores the data to be sent,

– recvbuf points to a buffer that stores the data to be received,

– nelems is the number of data units to be sent and received,

– dest is the identifier of the process that receives the data,

– source is the identifier of the process that sends the data.

• Process P0 sends a message to process P1 which receives and prints the
message.

3



• The important thing to note is that process P0 changes the value of a
to 0 immediately following the send.

• The semantics of the send operation require that the value received by
process P1 must be 100 (not 0).

• That is, the value of a at the time of the send operation must be the
value that is received by process P1.

• It may seem that it is quite straightforward to ensure the semantics of
the send and receive operations.

• However, based on how the send and receive operations are imple-
mented this may not be the case.

• Most message passing platforms have additional hardware support for
sending and receiving messages.

• They may support DMA (direct memory access) and asynchronous
message transfer using network interface hardware.

• Network interfaces allow the transfer of messages from buffer memory
to desired location without CPU intervention.

• Similarly, DMA allows copying of data from one memory location to
another (e.g., communication buffers) without CPU support (once they
have been programmed).

• As a result, if the send operation programs the communication hardware
and returns before the communication operation has been accomplished,
process P1 might receive the value 0 in a instead of 100!

1.3.1 Blocking Message Passing Operations

• A simple solution to the dilemma presented in the code fragment above
is for the send operation to return only when it is semantically safe to
do so.

• Note that this is not the same as saying that the send operation returns
only after the receiver has received the data.

• It simply means that the sending operation blocks until it can guarantee
that the semantics will not be violated on return irrespective of what
happens in the program subsequently.

4



• There are two mechanisms by which this can be achieved.

1. Blocking Non-Buffered Send/Receive

2. Blocking Buffered Send/Receive

1 Blocking Non-Buffered Send/Receive

• The send operation does not return until the matching receive has
been encountered at the receiving process.

• When this happens, the message is sent and the send operation
returns upon completion of the communication operation.

• Typically, this process involves a handshake between the sending
and receiving processes (see Fig. 1).

Figure 1: Handshake for a blocking non-buffered send/receive operation.

• The sending process sends a request to communicate to the receiving
process.

• When the receiving process encounters the target receive, it responds
to the request.

• The sending process upon receiving this response initiates a transfer
operation.

• Since there are no buffers used at either sending or receiving ends, this
is also referred to as a non-buffered blocking operation.

• Idling Overheads in Blocking Non-Buffered Operations: It is clear from
the figure that a blocking non-buffered protocol is suitable when the
send and receive are posted at roughly the same time (middle in the
figure).

5



• However, in an asynchronous environment, this may be impossible to
predict.

• This idling overhead is one of the major drawbacks of this protocol.

• Deadlocks in Blocking Non-Buffered Operations: Consider the following
simple exchange of messages that can lead to a deadlock:

• The code fragment makes the values of a available to both processes
P0 and P1.

• However, if the send and receive operations are implemented using a
blocking non-buffered protocol,

– the send at P0 waits for the matching receive at P1

– whereas the send at process P1 waits for the corresponding receive
at P0,

– resulting in an infinite wait.

• Deadlocks are very easy in blocking protocols and care must be taken
to break cyclic waits.

2 Blocking Buffered Send/Receive

• A simple solution to the idling and deadlocking problems outlined
above is to rely on buffers at the sending and receiving ends.

Figure 2Left

• On a send operation, the sender simply copies the data into the desig-
nated buffer and returns after the copy operation has been completed.

• The sender process can now continue with the program knowing that
any changes to the data will not impact program semantics.

• If the hardware supports asynchronous communication (independent of
the CPU), then a network transfer can be initiated after the message
has been copied into the buffer.

6



Figure 2: Blocking buffered transfer protocols: Left: in the presence of com-
munication hardware with buffers at send and receive ends; and Right: in the
absence of communication hardware, sender interrupts receiver and deposits
data in buffer at receiver end.

• Note that at the receiving end, the data cannot be stored directly at
the target location since this would violate program semantics.

• Instead, the data is copied into a buffer at the receiver as well.

• When the receiving process encounters a receive operation, it checks
to see if the message is available in its receive buffer. If so, the data is
copied into the target location.

Figure 2Right

• In Fig. 2Left, buffers are used at both sender and receiver and com-
munication is handled by dedicated hardware.

• Sometimes machines do not have such communication hardware.

• In this case, some of the overhead can be saved by buffering only on
one side.

• For example, on encountering a send operation, the sender interrupts
the receiver, both processes participate in a communication operation
and the message is deposited in a buffer at the receiver end.

• When the receiver eventually encounters a receive operation, the mes-
sage is copied from the buffer into the target location.

• In general, if the parallel program is highly synchronous, non-buffered
sends may perform better than buffered sends.

7



• However, generally, this is not the case and buffered sends are desirable
unless buffer capacity becomes an issue.

• Impact of finite buffers in message passing; consider the following code
fragment:

• In this code fragment, process P0 produces 1000 data items and process
P1 consumes them.

• However, if process P1 was slow getting to this loop, process P0 might
have sent all of its data.

• If there is enough buffer space, then both processes can proceed;

• however, if the buffer is not sufficient (i.e., buffer overflow), the sender
would have to be blocked until some of the corresponding receive op-
erations had been posted, thus freeing up buffer space.

• This can often lead to unforeseen overheads and performance degrada-
tion.

• In general, it is a good idea to write programs that have bounded buffer
requirements.

• Deadlocks in Buffered Send and Receive Operations:

• While buffering relieves many of the deadlock situations, it is still pos-
sible to write code that deadlocks.

• This is due to the fact that as in the non-buffered case, receive calls
are always blocking (to ensure semantic consistency).

• Thus, a simple code fragment such as the following deadlocks since
both processes wait to receive data but nobody sends it.

• Once again, such circular waits have to be broken.

• However, deadlocks are caused only by waits on receive operations in
this case.

8



1.3.2 Non-Blocking Message Passing Operations

• In blocking protocols, the overhead of guaranteeing semantic correctness
was paid in the form of idling (non-buffered) or buffer management
(buffered).

• It is possible to require the programmer

– to ensure semantic correctness,

– to provide a fast send/receive operation that incurs little overhead.

• This class of non-blocking protocols returns from the send or receive
operation before it is semantically safe to do so.

• Consequently, the user must be careful not to alter data that may be
potentially participating in communication.

• Non-blocking operations are generally accompanied by a check-status
operation,

• which indicates whether the semantics of a previously initiated transfer
may be violated or not.

• Upon return from a non-blocking operation, the process is free to per-
form any computation that does not depend upon the completion of
the operation.

• Later in the program, the process can check whether or not the non-
blocking operation has completed,

• and, if necessary, wait for its completion.

• Non-blocking operations can be buffered or non-buffered.

• In the non-buffered case, a process wishing to send data to another
simply posts a pending message and returns to the user program.

• The program can then do other useful work.

• At some point in the future, when the corresponding receive is posted,
the communication operation is initiated.

9



• When this operation is completed, the check-status operation indicates
that it is safe to touch this data.

• This transfer is indicated in Fig. 3Left.

• The benefits of non-blocking operations are further enhanced by the
presence of dedicated communication hardware.

• In this case, the communication overhead can be almost entirely masked
by non-blocking operations.

• However, the data being received is unsafe for the duration of the re-
ceive operation.

• This is illustrated in Fig. 3Right.

Figure 3: Non-blocking non-buffered send and receive operations Left: in
absence of communication hardware; Right: in presence of communication
hardware.

• Comparing Figures 3Left and 1a, it is easy to see that the idling time
when the process is waiting for the corresponding receive in a blocking
operation can now be utilized for computation (provided it does not
update the data being sent).

• This removes the major bottleneck associated with the former at the
expense of some program restructuring.

10



• Typical message-passing libraries such as Message Passing Interface
(MPI) and Parallel Virtual Machine (PVM) implement both blocking
and non-blocking operations.

• Blocking operations facilitate safe and easier programming.

• Non-blocking operations are useful for performance optimization by
masking communication overhead.

• One must, however, be careful using non-blocking protocols since errors
can result from unsafe access to data that is in the process of being
communicated.

Figure 4: Space of possible protocols for send and receive operations.

11


	Programming Using the Message-Passing Paradigm
	Principles of Message-Passing Programming
	Structure of Message-Passing Programs
	The Building Blocks: Send and Receive Operations
	Blocking Message Passing Operations
	Non-Blocking Message Passing Operations



