
1 Programming Shared Memory

1.1 What is a Thread?

• Technically, a thread is defined as an independent stream of in-
structions that can be scheduled to run by the operating system (OS).

• Suppose that a main program (a.out) that contains a number of pro-
cedures.

• Then suppose all of these procedures being able to be scheduled to run
simultaneously and/or independently.

• That would describe a “multi-threaded” program.

• Before understanding a thread, one first needs to understand a UNIX
process.

• Processes contain information about program resources and program
execution state.

Figure 1: Left: Unix process. Right: Threads within a Unix process.

• Threads use and exist within these process resources,

• To be scheduled by the OS,

• Run as independent entities.

1



• This independent flow of control is accomplished because a thread
maintains its own:

– Stack pointer

– Registers

– Scheduling properties (such as policy or priority)

– Set of pending and blocked signals

– Thread specific data.

• A thread has its own independent flow of control as long as its parent
process exists (dies if the parent process dies!).

• A thread duplicates only the essential resources it needs.

• A thread is ”lightweight” because most of the overhead has already
been accomplished through the creation of its process.

1.2 Threads Model

• In shared memory multiprocessor architectures, such as SMPs, threads
can be used to implement parallelism.

• In the threads model of parallel programming, a single process can have

– multiple concurrent,

– execution paths.

• Most simple analogy for threads is the concept of a single program that
includes a number of subroutines:

• a.out (main program) loads and acquires all of the necessary system
and user resources to run.

• Main program performs some serial work,

• and then creates a number of tasks (threads) that can be scheduled
and run by the OS concurrently.

• Each thread has local data, but also, shares the entire resources of main

program.

2



Figure 2: Threads model.

Figure 3: Thread shared memory model.

• This saves the overhead associated with replicating a program’s re-
sources for each thread.

• Each thread also benefits from a global memory view because it shares
the memory space of program.

• Any thread can execute any subroutine at the same time as other
threads.

• Threads communicate with each other through global memory (updat-
ing address locations).

• Changes made by one thread to shared system resources (such as closing
a file) will be seen by all other threads.

• This requires synchronization constructs to insure that more than
one thread is not updating the same global address at any time.

3



Figure 4: Threads Unsafe! Pointers having the same value point to the same
data.

• Threads can come and go, butmain program remains present to provide
the necessary shared resources until the application has completed.

• From a programming perspective, threads implementations commonly
comprise:

1. A library of subroutines that are called from within parallel source
code

2. A set of compiler directives embedded in either serial or parallel
source code

• In both cases, the programmer is responsible for determining all paral-
lelism.

1.3 Why Threads?

• The primary motivation for using threads is to realize potential pro-
gram performance gains.

• When compared to the cost of creating and managing a process, a
thread can be created with much less OS overhead.

• Managing threads requires fewer system resources than managing pro-
cesses.

• Threaded programming models offer significant advantages over message-
passing programming models along with some disadvantages as well.

4



• Software Portability;

• Threaded applications can be developed on serial machines and run on
parallel machines without any changes.

• This ability to migrate programs between diverse architectural plat-
forms is a very significant advantage of threaded APIs.

• Latency Hiding;

• One of the major overheads in programs (both serial and parallel) is
the access latency for memory access, I/O, and communication.

• By allowing multiple threads to execute on the same processor, threaded
APIs enable this latency to be hidden.

• In effect, while one thread is waiting for a communication operation,
other threads can utilize the CPU, thus masking associated overhead.

• Scheduling and Load Balancing;

• While writing shared address space parallel programs, a programmer
must express concurrency in a way that minimizes overheads of remote
interaction and idling.

• While in many structured applications the task of allocating equal work
to processors is easily accomplished,

• In unstructured and dynamic applications (such as game playing and
discrete optimization) this task is more difficult.

• Threaded APIs allow the programmer

– to specify a large number of concurrent tasks

– and support system-level dynamic mapping of tasks to processors
with a view to minimizing idling overheads.

• Ease of Programming, Widespread Use

• Due to the mentioned advantages, threaded programs are significantly
easier to write (!) than corresponding programs using message passing
APIs.

• With widespread acceptance of the POSIX thread API, development
tools for POSIX threads are more widely available and stable.

5



• Threaded applications offer potential performance gains and practical
advantages over non-threaded applications in several other ways:

• Overlapping CPU work with I/O: For example, a program may
have sections where it is performing a long I/O operation. While one
thread is waiting for an I/O system call to complete, CPU intensive
work can be performed by other threads.

• Priority/real-time scheduling: tasks which are more important can
be scheduled to supersede or interrupt lower priority tasks.

• Asynchronous event handling: tasks which service events of inde-
terminate frequency and duration can be interleaved. For example, a
web server can both transfer data from previous requests and manage
the arrival of new requests.

• A number of vendors provide vendor-specific thread APIs.

• Standardization efforts have resulted in two very different implementa-
tions of threads.

• Microsoft has its own implementation for threads, which is not related
to the UNIX POSIX standard or OpenMP.

1. POSIX Threads. Library based; requires parallel coding.

• The IEEE specifies a standard 1003.1c-1995 (latest 1003.1, 2004),
POSIX API.

• C Language only. Very explicit parallelism; requires significant
programmer attention to detail.

• Commonly referred to as Pthreads .

• POSIX has emerged as the standard threads API, supported by
most vendors.

• The concepts themselves are largely independent of the API and
can be used for programming with other thread APIs (NT threads,
Solaris threads, Java threads, etc.) as well.

1. OpenMP. Compiler directive based; can use serial code.

• Jointly defined by a group of major computer hardware and soft-
ware vendors.

• The OpenMP Fortran API was released October 28, 1997.

6



• The OpenMP C/C++ API was released in late 1998.

• Portable / multi-platform, including Unix and Windows NT plat-
forms

• Can be very easy and simple to use - provides for “incremental
parallelism“.

• MPI =⇒ on-node communications,

• Threads =⇒ on-node data transfer.

• MPI libraries usually implement on-node task communication via shared
memory, which involves at least one memory copy operation (process
to process).

• For Pthreads there is no intermediate memory copy required be-
cause threads share the same address space within a single process.

• There is no data transfer.

• It becomes more of a cache-to-CPU or memory-to-CPU bandwidth
(worst case) situation.

• These speeds are much higher.

• Programs having the following characteristics may be well suited for
Threads:

• Work that can be executed, or data that can be operated on, by
multiple tasks simultaneously.

• Block for potentially long I/O waits.

• Use many CPU cycles in some places but not others.

• Must respond to asynchronous events.

• Some work is more important than other work (priority interrupts).

Common models for thread programming:

• Manager/worker: a single thread, the manager assigns work to other
threads, the workers. Typically, the manager handles all input and
distribute work to the other tasks. At least two forms of the man-
ager/worker model are common:

7



1. static worker pool,

2. dynamic worker pool.

• Pipeline: a task is broken into a series of suboperations, each of which
is handled in series, but concurrently, by a different thread. An auto-
mobile assembly line best describes this model.

• Peer: similar to the manager/worker model, but after the main thread
creates other threads, it participates in the work.

1.4 Thread Basics: Creation and Termination

1.4.1 Thread Creation

• The Pthreads API subroutines can be informally grouped into four
major groups:

1. Thread management: Routines that work directly on threads -
creating, detaching, joining, set/query thread attributes (joinable,
scheduling etc.), etc.

2. Mutexes: Routines that deal with synchronization. Mutex func-
tions provide for creating, destroying, locking and unlocking mu-
texes, setting or modifying attributes associated with mutexes.

3. Condition variables: Routines that address communications
between threads that share a mutex. Functions to create, destroy,
wait and signal based upon specified variable values, set/query
condition variable attributes.

4. Synchronization: Routines that manage read/write locks and
barriers.

• Creating Threads:

• Initially, main program contains a single, default thread.

• pthread create creates a new thread and makes it executable.

1 #include <pthread.h>

2 int

3 pthread_create (

4 pthread_t *thread_handle,

5 const pthread_attr_t *attribute,

6 void * (*thread_function)(void *),

7 void *arg);

8



• Creates a single thread that corresponds to the invocation of the func-
tion thread function (and any other functions called by thread function).

• Once created, threads are peers, and may create other threads.

• On successful creation of a thread, a unique identifier is associated with
the thread and assigned to the location pointed to by thread handle.

• On successful creation of a thread, pthread create returns 0; else it
returns an error code.

• The thread has the attributes described by the attribute argument.

• When this argument is NULL, a thread with default attributes is cre-
ated.

• Some of these ”default” attributes can be changed by the programmer
via the thread attribute object.

• pthread attr init and pthread attr destroy are used to initialize/
destroy the thread attribute object.

• The arg field specifies a pointer to the argument to function thread function.

• This argument is typically used to pass the workspace and other thread-
specific data to a thread.

• There is no implied hierarchy or dependency between threads.

• Unless you are using the Pthreads scheduling mechanism, it is up to
the implementation and/or OS to decide where and when threads will
execute.

• If the thread is scheduled on the same processor, the new thread may,
in fact, preempt its creator.

• This is important because all thread initialization procedures must be
completed before creating the thread.

• This is a very common class of errors caused by race conditions for
data access that shows itself in some execution instances, but not in
others.

• Robust programs should not depend upon threads executing in a spe-
cific order.

9



1.4.2 Thread Termination

• Terminating Threads.

• There are several ways in which a Pthread may be terminated:

a The thread returns from its starting routine (the main routine for the
initial thread).

b The thread makes a call to the pthread exit subroutine.

– Typically, the pthread exit routine is called after a thread has
completed its work and is no longer required to exist.

c The thread is cancelled by another thread via the pthread cancel
routine.

d The entire process is terminated due to a call to either the exec or exit
subroutines.

– Ifmain finishes before the threads and exits with pthread exit(),
the other threads will continue to execute (join function).

– If main finishes after the threads and exits, the threads will be
automatically terminated.

• Cleanup: the pthread exit() routine does not close files; any files
opened inside the thread will remain open after the thread is termi-
nated.

• Example: This example code creates 5 threads with the pthread create()
routine.

• Each thread prints a ’Hello World!’ message, and then terminates with
a call to pthread exit().

10



#include <pthread.h>

#include <stdio.h>

#define NUM_THREADS 5

void *PrintHello(void *threadid)

{

long tid;

tid = (long)threadid;

printf("Hello World! It’s me, thread #%ld!\n", tid);

pthread_exit(NULL);

}

int main (int argc, char *argv[])

{

pthread_t threads[NUM_THREADS];

int rc;

long t;

for(t=0; t<NUM_THREADS; t++){

printf("In main: creating thread %ld\n", t);

rc = pthread_create(&threads[t], NULL, PrintHello,

(void *)t);

if (rc){

printf("ERROR; return code from pthread_create() is

%d\n", rc);

exit(-1);

}

}

pthread_exit(NULL);

}

11


	Programming Shared Memory
	What is a Thread?
	Threads Model
	Why Threads?
	Thread Basics: Creation and Termination
	Thread Creation
	Thread Termination



