
1 Thread Examples

1.1 Computing the value of π

• Computing the value of π.

• Based on generating random numbers in a unit length square and count-
ing the number of points that fall within the largest circle inscribed in
the square.

• Since the area of the circle (πr2) is equal to π/4, and the area of the
square is 1 × 1, the fraction of random points that fall in the circle
should approach π/4.

• Threaded strategy:

• assigns a fixed number of points to each thread.

• Each thread generates these random points and keeps track of the num-
ber of points in the circle locally.

• After all threads finish execution, their counts are combined to com-
pute the value of π (by calculating the fraction over all threads and
multiplying by 4).

1



The arg field is used to pass an integer id that is used as a seed for
randomization.

• For computing the value of π,

• First read in the desired number of threads, num threads, and the de-
sired number of sample points, sample points.

• These points are divided equally among the threads.

• The program uses an array, hits, for assigning an integer id to each
thread (this id is used as a seed for randomizing the random number
generator).

• The same array is used to keep track of the number of hits (points
inside the circle) encountered by each thread upon return.

• The program creates num threads threads, each invoking the same function
compute pi, using the pthread create function.

2



• Once the respective compute pi threads have generated assigned num-
ber of random points and computed their hit ratios, the results must
be combined to determine π.

• Once all threads have joined, the value of π is computed by multiplying
the combined hit ratio by 4.0.

• The use of the function rand r (instead of superior random number
generators such as drand48 ).

• The reason for this is that many functions (including rand and drand48 )
are not reentrant.

1.2 Producer-consumer work queues

• Producer-consumer work queues

• A common use of mutex-locks is in establishing a producer-consumer
relationship between threads.

3



• The producer creates tasks and inserts them into a work-queue.

• The consumer threads pick up tasks from the task queue and
execute them.

• Consider that the task queue can hold only one task.

• In a general case, the task queue may be longer but is typically of
bounded size.

• A simple (and incorrect) threaded program would associate a producer
thread with creating a task

• and placing it in a shared data structure

• and the consumer threads with picking up tasks from this shared data
structure and executing them.

• However, this simple version does not account for the following possi-
bilities:

1 The producer thread must not overwrite the shared buffer when the
previous task has not been picked up by a consumer thread.

2 The consumer threads must not pick up tasks until there is something
present in the shared data structure.

3 Individual consumer threads should pick up tasks one at a time.

• To implement this, we can use a variable called task available.

– If this variable is 0, consumer threads must wait, but the producer
thread can insert tasks into the shared data structure task queue.

– If task available is equal to 1, the producer thread must wait to
insert the task into the shared data structure but one of the con-
sumer threads can pick up the task available.

All of these operations on the variable task available should be protected
by mutex-locks to ensure that only one thread is executing test-update on
it.

• The create task and process task functions are left outside the criti-
cal region, making the critical section as small as possible.

4



• but insert into queue and extract from queue functions are left inside
the critical region.

• Inside because if the lock is relinquished after updating task available

but not inserting or extracting the task,

• other threads may gain access to the shared data structure while the
insertion or extraction is in progress, resulting in errors.

• For producer-consumer work queues

• The producer thread creates a task and waits for space on the queue.

• This is indicated by the variable task available being 0.

• The test and update of this variable as well as insertion and extraction
from the shared queue are protected by a mutex called task queue lock.

• Once space is available on the task queue, the recently created task is
inserted into the task queue and the availability of the task is signaled
by setting task available to 1.

• Within the producer thread, the fact that the recently created task has
been inserted into the queue is signaled by the variable inserted being
set to 1, which allows the producer to produce the next task.

• Irrespective of whether a recently created task is successfully inserted
into the queue or not, the lock is relinquished.

5



• This allows consumer threads to pick up work from the queue in case
there is work on the queue to begin with.

• If the lock is not relinquished, threads would deadlock since a consumer
would not be able to get the lock to pick up the task and the producer
would not be able to insert its task into the task queue.

• The consumer thread waits for a task to become available and executes
it when available.

• As was the case with the producer thread, the consumer relinquishes
the lock in each iteration of the while loop to allow the producer to
insert work into the queue if there was none.

2 Condition Variables for Synchronization

• Indiscriminate use of locks can result in idling overhead from
blocked threads.

• While the function pthread mutex trylock removes this overhead,
it introduces the overhead of polling for availability of locks.

• For example, if the producer-consumer example is rewritten using pthread mutex trylock

instead of pthread mutex lock,

6



• the producer and consumer threads would have to periodically poll for
availability of lock (and subsequently availability of buffer space or
tasks on queue).

• A natural solution to this problem is to suspend the execution of
the polling thread until space becomes available.

• An interrupt driven mechanism as opposed to a polled mecha-
nism.

• The availability of space is signaled by the thread that holding the
space.

• The functionality to accomplish this is provided by a condition variable.

• A condition variable is a data object used for synchronizing threads
and always used in conjunction with a mutex lock.

• While mutexes implement synchronization by controlling thread ac-
cess to data,

• condition variables allow threads to synchronize based upon the actual
value of data.

• This variable allows a thread to block itself until specified data reaches
a predefined state.

7



• pthread cond wait

• A thread locks this mutex and tests the predicate defined on the shared
variable;

• if the predicate is not true, the thread waits on the condition variable
associated with the predicate using this function.

• A call to this function blocks the execution of the thread until it receives
a signal from another thread or is interrupted by an OS signal.

• In addition to blocking the thread, the pthread cond wait function
releases the lock on mutex.

• This is important because otherwise no other thread will be able to
work on the shared variable and the predicate would never be satisfied.

• pthread cond signal

• When the condition is signaled, pthread cond signal, one of these
threads in the queue is unblocked,

• and when the mutex becomes available, it is handed to this thread (and
the thread becomes runnable).

• When the thread is released on a signal, it waits to reacquire the lock
on mutex before resuming execution.

• It is convenient to think of each condition variable as being associated
with a queue.

• Threads performing a condition wait on the variable relinquish their
lock and enter the queue.

• pthread cond init & pthread cond destroy

8



• Function calls for initializing and destroying condition variables.

• Condition variables must be declared with type pthread cond t, and
must be initialized before they can be used.

• There are two ways to initialize a condition variable:

1 Statically, when it is declared. For example: pthread cond t myconvar

= PTHREAD COND INITIALIZER;

2 Dynamically, with the pthread cond init() routine.

• The function pthread cond init initializes a condition variable (pointed
to by cond).

• The ID of the created condition variable is returned to the calling thread

through the condition parameter.

• This method permits setting condition variable object attributes, attr. (NULL

assigns default attributes)

• If at some point in a program a condition variable is no longer required,
it can be discarded using the function pthread cond destroy.

Figure 1: A representative sequence for using condition variables.

9



• When a thread performs a condition wait, it takes itself off the runnable
list consequently, it does not use any CPU cycles until it is woken up.

• This is in contrast to a mutex lock which consumes CPU cycles as it
polls for the lock.

• pthread cond broadcast.

• In some cases, it may be beneficial to wake all threads that are waiting
on the condition variable as opposed to a single thread.

• An example of this is in the producer-consumer scenario with large
work queues and multiple tasks being inserted into the work queue on
each insertion cycle.

• Another example is in the implementation of barriers.

• pthread cond timedwait,

• It is often useful to build time-outs into condition waits.

• Using the function a thread can perform a wait on a condition variable
until a specified time expires.

• At this point, the thread wakes up by itself if it does not receive a
signal or a broadcast.

• If the absolute time abstime specified expires before a signal or broad-
cast is received, the function returns an error message.

• It also reacquires the lock on mutex when it becomes available.

10


	Thread Examples
	Computing the value of 
	Producer-consumer work queues

	Condition Variables for Synchronization

