Joint Probability Distribution

      x   Row
$ f(x,y)$   0 1 2 Totals
  0 $ \frac{3}{28}$ $ \frac{9}{28}$ $ \frac{3}{28}$ $ \frac{15}{28}$
           
y 1 $ \frac{3}{14}$ $ \frac{3}{14}$   $ \frac{3}{7}$
           
  2 $ \frac{1}{28}$     $ \frac{1}{28}$
           
Column   $ \frac{5}{14}$ $ \frac{15}{28}$ $ \frac{3}{28}$ 1
Totals          

Example 3.16: Show that the column and row totals of the following table give the marginal distribution of $ X$ alone and of $ Y$ alone.

      x   Row
$ f(x,y)$   0 1 2 Totals
  0 $ \frac{3}{28}$ $ \frac{9}{28}$ $ \frac{3}{28}$ $ \frac{15}{28}$
           
y 1 $ \frac{3}{14}$ $ \frac{3}{14}$   $ \frac{3}{7}$
           
  2 $ \frac{1}{28}$     $ \frac{1}{28}$
           
Column   $ \frac{5}{14}$ $ \frac{15}{28}$ $ \frac{3}{28}$ 1
Totals          

Solution:

$\displaystyle P(X=0)=g(0)=\sum_{y=0}^2 f(0,y)=f(0,0)+f(0,1)+f(0,2)
$

$\displaystyle =\frac{3}{28}+\frac{3}{14}+\frac{1}{28}=\frac{5}{14}
$

$\displaystyle P(X=1)=g(1)=\sum_{y=0}^2 f(1,y)=f(1,0)+f(1,1)+f(1,2)
$

$\displaystyle =\frac{9}{28}+\frac{3}{14}+0=\frac{15}{28}
$

$\displaystyle P(X=2)=g(2)=\sum_{y=0}^2 f(2,y)=f(2,0)+f(2,1)+f(2,2)
$

$\displaystyle =\frac{3}{28}+0+0=\frac{3}{28}
$

x 0 1 2
g(x) $ \frac{5}{14}$ $ \frac{15}{28}$ $ \frac{3}{28}$

Definition 3.13:
\fbox{\parbox{5in}{
Let $X_1, X_2,\ldots ,X_n$\ be $n$\ random variables, discre...
...(x_n)
\end{displaymath}for all $(x_1, x_2 ,\ldots ,x_n)$\ within their range.
}}

Cem Ozdogan 2010-03-15